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1. INTRODUCTION

Recent developments in aerodynamics and space flight
have caused increasingly focused attention on the problem
of theoretically predicting the blunt body flow field.
Three current numerical approaches for treating this problem
include solution of either the full Navier-Stokes equations,
the second-order boundary-layer equations, or the viscous
shock layer equations. Use of the full Navier-Stokes
equations [1] has heen quite successful in providing
solutions for stagn;tion regions, but generally have been
applied for only one nose radius downstream. This is
because the elliptic nature of these equations increases
the complexity of the solution procedure and restricts
the application of these methods in the downstream
direction. While there are several computational diffi-
culties associated with the second-order boundary layer
approach [2], many of the difficulties associated with
computing viscous hypersonic flows over blunt bedies can
be overcome through use of the viscous shock layer
equations. In this approach the entire flow field, from
the body to the shock, is treated in a unified manner.
This is the approach taken here, wherein the basic method
of Davis [2] is applied to nonanalytic bodies such as

spherically blunted cones.
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Blunted cones merit further study, both because some
blunting of the tip of a sharp cone due to extreme
heating appears unavoidable and because blunting has favor-
able effects on transition. Previous research [3, 4] has
shown that a small amount of bluntness to a sharp cone is
conducive to a delay in boundary layer transition. Unfor-
tunately only limited work has been done in the past for
such nonanalytic bodies, in part, due to the difficulties
associated with the discontinuity occurring in the
surface curvature at the sphere/cone juncture point when-
ever a surface coordinate system is used. Miner and
Lewis [5] and Xang and Dunn [6] have been able to obtain
some numerical solutions for such nose cone problems.
The approaéh of Miner'and Lewis [5] was to smoothen the
effect of the curvature discontinuity at the sphere/cone
tangency point by constructing an artificially continuous
distribution of curvature. Xang and Dunn [6] approached
the same problem by application of a Karman-Pohlhausen
integral method to the Navier-Stokes equations under a
thin shock layer assumption. They treated the nose region
as well as the afterbody conical section of the spheri-
cally blunted cones in a similar manner. While these
solutions yield acceptable numerical results, it appears
that a more consistant formulation, which accounted for
the flow behavior at the sphere cone tangency point, could

improve these solutions and enhance their reliability.
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The basic difficulty, however, is that only a very
limited amount of information is available for the flow
behavior at such a curvature discontinuity - information
that could be utilized in a computational procedure to
achieve more accurate solutions. It is known from
inviscid considerations that a streamline curvature
disconéinuity produces a discontinuity in the flow
gradients along that streamline. Viscous effects in such
problems are expected to remove such surface gradient
jumps in a manner shown by Messiter and Hu [7] for two
dimensional flows. Their analysis for high Reynolds
number flows shows that the jump in pressure gradient
predicted by the inviscid flow theory is smoothed by
viscous effects through a triple deck structure near the
juncture region. However the region within which this
smoothing takes place is found to be small for realistic
finite Reynolds numbers and it would be anticipated that
a viscous numerical calculation with a finite mesh size
might not capture this physical phenomenon and would
therefore still predict a gradient discontinuity. Thus,
one is faced with the prospect of generating finite
difference approximations for regions in which the flow
gradients are virtually discontinuous.

An added complication arises because the viscous

shock layer equations, when written in a surface coordinate
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system, contain explicit dependence on the surface curvature.
The surface curvature undergoes a discontinuous change from
a value of one on the sphere to a value of zero on the cone
portion resulting in the appearance of gradient discon-
tinuities in all flow variables at all points normal to
the body surface across the shock layer thickness at the
juncture point. These discontinuities are purely an
artifice aﬁd occur only because of the choice of surface f
coordinates. None-the-less they must be accounted for in

any numerical approximating procedure if reliable results

are to be achieved.

An analytical assessment of the flow beQaVior at the
sphere/cone juncture point and subsequently a proper numerical
formulation of this probleﬁ is ;he purpose of the present
study. It is believed that when a surface coordinate
frame of reference is used a finite difference formulation
of the governing equations must be such that the longitudinal
derivatives be carefully evaluated at the sphere/cone
juncture point in order to eliminate large numerical
truncation errors. This can be done by ensuring that the
finite difference form of the longitudinal derivatives
avoid any différencing across the sphere/cone juncture
discontinuity. This technique is demonstrated in the

present approach where the numerical scheme utilizes a

i0
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time dependent relaxation technique for the shock wave
shape. A model problem analogous to the sphere/cone
juncture problem is first formulated and finite difference
schemes developed and demonstrated for this case. It is
shown that the present method accurately captures the
anticipated discontinuous behavior of the flow derivatives
at the model juncture point. This concept is then
extended for the solution of the viscous shock layer
equations for hypersonic flow past spherically blunted
cones with half cone angles varying from 30° to 0° under
various free stream conditions. The results indicate

good comparisons with inviscid solutions and experimental

data.

11
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II. GOVERNING EQUATIONS

The viscous shock layer concept has been presented in
detail by Davis [2] and therefore is only summarized here.
The compressible Navier-Stokes equations are written in a
boundary layer like coordinate system (see Fig. 1) and
nondimensionalized by variables which are of order one in
the region near the body surface (boundary layer) for
large Reynolds numbers. The same set of egquations are
then written in variables which are of order one in the
essentially inviscid region outside the boundary layer.

In the final set of equations terms are retained that are
second-order in the inverse square root of a Reynolds
number. A comparison of the two sets of equations is
then made and one set of equations is found from them
which is valid to second order in both the (inviscid)
outer and inner (viscous) regions. A solution to this
set of equations is thus uniformly wvalid to second order
in the entire shock layer for arbitrary Reynolds number.
The resulting equations'(and notation) are the same as

those presented by Davis [2] and are given as:
Continuity:

[(r+ncos¢)jpu]S + [(1+|<n)(r+ncos¢)jpv]n =90 (la)

12
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Longitudinal Momentum:
p{u us/(1+xn) +vou + kav/{l+kn)} + ps/(1+zn)

= [;_2/(1+|<n)2(r+ncos¢)j][(l+nn)2(r+ncos¢)jr]n

{1b)
where,
T = u[un - xu/(1l+xkn)] ' (lc)
Normal Momentum:
plu v /(1+kn) + v v, = ku’/(l+xn)} + p_ = 0 (1d)

which with the thin shock layer approximation becomes,
2
-p xu”/(l+kn) + p, = 0 (le)

Energy Eguation:

p{UTS/(1+Kn) + an}- u ps/(l+zn) -Vvp,= e212/u

+[e2/(1+xn) (r+ncoss) I1 [(L+kn) (z4ncosp) g1, (18)
where

q=u T/ o (1g)

Equation of State:
p= (y-1)pT/y (1h)
Viscosity Law:

w o= 13/2(24e") / (Tre) (1i)

13
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where

* L 3
c =c /Mz T (y-1)
*
and ¢ 1is taken to be 198.6°R for air.
The boundary conditions employed here are the no

slip surface conditions,

u(s,o) vi(s,0) = 0 (2a)

and

T(s,o0)

T (2b)

while at the shock location the oblique shock relations
are used to relate the flow variables just aft of the
shock to the free stream conditions through the local

shock slope. These relations are given as’

u_, sin(a+g) + 6sh cos (a+8) (3a)

ush =

~

vSh = = ush cos{a+B) + GSh Sin(u+5) (3b)

where ash and ;sh are velocity components at the shock

given as
Gsh = cosao (3¢)
Vep = sina/psh (34)
and
p'sh = YpSh/(Y-l)TSh (38)

14
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with
b, = [2/(y+1)1sin%a = (y=1)/y (y+1)M2 (3£)
T, = (ugy - cosa)?/2 + {14/ (y+1)%)sina+[2/(y-1)
~aty-1) 7 (y+1) 212 - 47(v+1) M} sin?a)/2 (3g)

The shock angle, ¢, is related to the shock thickness,

ng, through the relation

dn

EEE /(l+en ) = tan(a-¢) (4a)

The wvalue of ng itself can be written from mass conservation
considerations as
Ng

(r+nscos¢)1+j = 2j f pu(r+ncos¢)j dn (4b)
o -

For reasons explained in Reference [2], the above

equations will be normalized according to the following

scheme:
n = n/n, E =58 u = u/u, v = v/v
t = T/Ty, P = P/Pgp o = po/Pgy v = w/ugy
(5a-h)

The differential relations needed to transform equations

(La) through (1i) are given by

15
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3/3s = 3/3E =~ n(n;h/nsh) 3/3n

9/on = (l/nsh) 3/3n

a2/an® = (1/n2) 2%/an? (6)
where,

Ny = (dnsh/ds)

The s-momentum and energy equations (lb) and (1f) written
in the transformed £,n plane can be conveniently put in

a standardized form for a parabolic equation as,

82w/3n2 + al(aw/an) + a,w + ag + u4(8w/a£) =0 (7)

where w represents u for the s~momentum equation, and
t for the energ& equation. For the momentum equation the

coefficients o, * a, are:

_ Psh%sh"sh “sh_ pun _ PshVsh"sh v
% 2 I+knn = 2 -
€ ush H I-lsh U
Kn cosdén
- sh sh
+ou /ot + (8a)
n 1+Knshn Y+nshncos¢

16
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17

- - Psh¥sh™sh fsh pu _ Psh¥shsh = *Psh 5 v
2 l4kn_,n - 2 l4kn . n -
€ g sh ¥ CR R sh u
n - Kn cos¢n Kn
. 1+nih n un/u _(1+K:h n r+n zgs¢) x(1+K:h n)
sh sh sh" gh
(8b)
] ]
p_.n n n p
sh 'sh sh - - sh = sh =
- 1/w 1/u_, (p,- — np, + — p)
e2u 1+|<nsh sh' g oy n Psh
sh .
(8c)
- 2 pu
- (pshushnsh/e ush)(nsh/(1+Knsh") m (84)
energy equation the coefficients are
[}
_ Psh'sh”sh® "sh  pun _ PshVsh"sh? v
+ - -
eZHSh 1 KN N " efug "
Kn cosén
- - sh sh
+ un/u + l+:nshn + r+nshncos¢ (9a)
_ ', 2 2 pu
= ~{pghUshTsh/e ¥gnTsn) (Rgn/ (1+kngyn)) x = (9b)
- t T
p,U N .0 - n.u - n - P _
= SbShSh 1/ iR By - 5 P, * oot )
€ “shTsh sh sh sh
v u2 o Kn
sh == sh - sh - 2
+ — vp 1+ (u - =——m u) (9¢)
Ush " Tgn n lhkngn
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ay = “"psh“shnsh/ez“sh’‘nsh/fl+““sh"’)§E (94d)

The remaining differential equations are first order and

are the continuity equation:

[n , (r+n_ ncosé) o u ;E]E + [{xr+n_ ncos¢)x

{(tengn)e Ve PV = Ngp Pty pun}]n =0

(10}
and the n-momentum equation:
1
pu (3, -n. /o, nv_ + S8 §ye Shev g
(l+:<nshn5 g sh’ “'sh n Vsh Uy Bgh M
_ K Ysh 552 + Psh B =0
I+engpn Ven Psh¥shVsh"sh "

' (11)
where with the thin layer approximation this equation
becomes,

B = [x/(l#xn_n)1(p_usn_/p_) pi- (12)
Py sh sh sh'sh’/Psh’ P
This leaves the equation of state,
P = pt (13)
and the viscosity law,
- _ ! - ! =3/2
= [T, + ¢ )/(T,t+c )1 t (14)

18
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At the shock location all variables are unity,

i=v=t=p=p=u=1 at n=1 (15)

An equation of mass conservation can be obtained from
equation (10) by integrating from n =0 to n = 1 .while

holding & constant. This results in

).
%%-= (r+nshcos¢)[nshpshush —(1+Knsh)pshvsh] (16a)
where
1 - -
m= é nsh(r+nshncos¢)pshush pu dn . (16b)

is proportional to the rate of mass flux between the body n
and shock at a given position on the body surface.
Equations (7), (10)-(14) and (16), constitute the
complete set of governing equations for the unknowns ﬁ, ;,
t, p, u, p and ng,. These equations are solved along
with the surface boundary conditions given by equations
(2a) and (2b) and the shock conditions given by equation
(15) . The mass conservation equation (16a) and (16b) is
used to determine the shock stand off distance Ngpe The
general procedure is to evaluate the rate of mass flux
between the body and shock at a given position on the
body surface from equation (16b) using the wvalues of the
physical quantities previously calculated and then evaluate

n., from equation (16a) .

19
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III. JUNCTURE REGION

1. Inviscid.FlowAnalysié

The aim of the present section is to analyze the nature
of the flow at a sphere/cone juncture point in the light of
various forms of the gas dynamic equations. It is of
interest to analyze the viscous as well as inviscid éas
dynamic equations in order to understand the physical
behavior at a point in the flow field where a discontinuity
in curvature is encountered. In order to be fully con-
sistgnt in the present analysis, it is desirable to first
consider the flow behavior from an inviscid standpoint and
then subsequently include viscous effects.

From an inviscid standpoint, it is known from Euler's’
equations that a streamline curvature discontinuity
produces a discontinuity in the.flow gradients only along
that streamline [8]. For locally supersonic flows, the
discontinuity at a juncture point (e.g. sphere/cone tan-
gency point) in the flow gradients will be propagated along the
characteristic lines inclined at the local Mach angle to
the flow direction. Eventually, therefore, such discon-
tinuities in the flow gradients would propagate everywhere
within the flow field downstream of the juncture discontinuity
due to successive reflections of these characteristic

lines from the shock and body surface.

20
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Note, however, that at the juncture point the flow gra-
dients will be continuous across the shock layer except at the
body surface where gradient discontinuities will be
present.. Note must also be made here that the flow
variables themselves are found to be continuous at the
juncture point across the shock layer. However, an
added complication arises due to the explicit appearance
of the surface curvature in these equations when written
in a surface coordinate system. Since the surface
curvature itself is discontinuous at the sphere/cone
juncture point, it is necessary to assess the influence
of the discontinuity on the flow properties and their
derivatives. Intuitively it is obvious that a mere
coordinate transformation would not affect the physical
behavior so that the flow variables themselves are
continuous at the juncture point all across the shock
léyer. This can also be straightforwardly demonstrated
through consideration of the integral form of the con-
servétion laws in the surface coordinate system as shown
in Appendix (A).

Note that the set of equations (A7 , 14, 20) in Appendix
(A) provide for either the trivial case of Py = Py and
u; = u,, or a shock like discontinuity. Since there is no
physical event that could céuse a shock at the sphere/cone

juncture point, it is fairly evident that the trivial

21
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solution is expected for this case indicating that the
flow variables are continuous at the sphere/cone juncture
point in the surface coordinate system. However the

same conclusion does not apply to the flow derivatives
with respect to the-surface distance. This is evident
from the differential form of the two-dimensional inviscid
gas dynamic equations as recovered from the integral

equations, These are given as,

Continuity
(pu) . + (1l+xn) (pv), + kpv = 0 (17)
s-Momentum
Pg + puug + (1+xn) pvu, + kpuv = 0 (18)
n-Momentum
puvg /(1+gn) + pVV, - Kpuz/(l+Kn) + P, = 0 (19)

Energy Equation

puT, + van(1+Kn) - upg - vpn(l+nn) = 0 (20)

Equation of State

p = (1_;1) o (21)
Using the equation of state and defining a2 = (yp/p), the

energy equation can be rewritten as,

upg + v(1+|<n)pn - ua2ps - v(l+|<n)a2pn =0 (22)

22
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Equations (17) tﬁrough (22) can now be used on the two
sides of the sphere/cone juncture point, noting that the
surface curvature, k, takes a valué of 1.0 on the spherical
part and a value of 0 on the conical part. Using subscript
1 and 2 for the sphere and cone portions respectively

and noting that the flow variables are continuous across
the juncture point, the inviscid equations provide the

following jump conditions at the juncture point,

psl = (1+n) psz (23a})
PSl = (1l+n) ps2 (23b)
usl = (1l+n) u52 - v (23c)
vsl = (1+n) vsz +u (234)

In addition to the flow variables themselves, consi-
deration must also be given to the bow shock shape. Note
that for problems of this type the shock shape itself would
be expected to be smooth through the sphere cone juncture
point with the shock slope at aﬁy location given in terms
of the axial coordinaté system (Figure 1) as

_ dRr
tana = a; (24)
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Since the shock shape, R, itself is a smooth function through
the sphere/cone tangency point, the shock slope, a,

would be smooth at this point. However, the first derivative
of the shock distance, R, with respect to the surface

coordinate system is obtained from the geometrical relation;

dr sina

s = U*ng) Sostamey (25)

Since the shock angle, o, and the body angle, ¢, are
continuous functions of the surface distance, this relation
yields a jump condition for dR/ds at the sphere/cone

tangency point as,

dr

26
ds’ cone (26)

dR
= = (1+
(& o onere = (M) ¢

Similar discontinuous behavior can be shown to appear in
derivatives such as dns/ds and dxs/ds as shown by the

following expressions,

dns
dxs = (l+xn ) cosa (28)
ds s’ c¢os (G-¢5

The corresponding jump conditions, therefore, can be

written as,
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s (1+n_) (da'—ns) (
(=) = (1+ 29
ds " sphere s’ 'ds cone )
dx dax

—_— = (1+ - 30
(ds )sphere ( ns)(ds )cone (30)

It is of interest to note that the expression (24), can be

rewritten using the surface-coordinate system as,

% tana = g—g_

indicating that the discontinuity associated with dxg/ds
and dR/ds at the juncture point are of the nature such
that the shock slope, o, itself is continuous at this
point.

It must be pointed out here that similar jump conditions
can also be established for the second derivatives.of the
flow quantities mentioned above, whenever required. These
derivatives are undefined at the juncture point in this
coordinate system, however finite values exist for these
quantitites immediately ahead and behind the juncture point.
A typical case where higher derivatives are needed is at
the shock location. The derivatives of the flow properties
behind the shock are shown in Appendix (B). Note that
these derivatives (B1l, B15-17) undergo discontinuous
changes at the sphere/cone juncture point and the

magnitude of these discontinuities are related to the
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surface curvature, kx, and the discontinuity associated
with the.second derivative of the shock shape, dzR/dsz.
However it is important to emphasize, here, that this
situation is entirely due to the use of the surface
coordinate system.

It is, thus, found that within the framework of
Euler's equations the flow properties are continuous
whereas the flow derivatives with respect to surface
distance are discontinuous across the layer at the
sphere/cone juncture point. The slope of the shock
relative to the surface distance is also found to be

discontinuous at this point.

2. Viscous Flow Analysis

(a) Classical Boundary Layer

From a viscous standpoint it seems more rational to
first address the question of validity of the various forms
of the viscous gas dynamic equations as applied to the
spherically blunted cones with a discontinuous surface
curvature at the juncture point. The boundary layer
version of the Navier-Stokes equations cannot hold at the
sphere/cone juncture point becuase the longitudinal
derivative of the surface curvatufe, dk/9s >> 1 [9, 10]
and thﬁs the gradient of the corresponding inviscid-

pressure is discontinuous there. Any such discontinuity
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would séem to be in violation of the boundary layer scaling
laws wherein longitudinal derivatives are assumed to be
much smaller than normal derivatives. This becomes more
apparent when one considers inclusion of higher order

terms in the boundary layer equations. The second order

correction (in Re-l/z

) due to longitudinal curvature is
driven by the rate of change of curvature - thus causing
this higher order effect to rise up to first order level
near a sphere/cone juncture point. It is, therefore,
apparent that a new local solution needs to be developed
near the juncture point in order to accommodate this

anomoly. Such an analysis has been performed by Messiter

and Hu [7] for two-dimensional flows.

(b) Triple Deck Analysis

A study of the juncture region has been completed by
Messiter and Hu [7] for two-dimensional flow problems.
They point out that, unlike the classical boundary layer
case, an interaction with the external flow must be
taken into account, this occurring through a small pressure
change acting over a suitably small distance along the
boundary layer. The details of the resulting local
pressure distribution cannot be specified in advance,
but must be found by studying changes in the boundary

layer coupled with small perturbations on the external
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flow. Messiter's analysis shows that the discontinuity
in the pressure gradient predicted by the inviscid flow
theory can be removed by using'a triple deck formulation
and continuous expressions for the pressure gradient can
be obtained which are presumed to be correct asymptotic
representations as the viscosity coefficient approaches
zero. This is achieved by noting that, locally,the most
important changes in the profile shape occur in a thin
sublayer [11, 12] close to the wall where the changes

in the viscous, pressure,and inertia forces are all of the
same order as the characteristic keynolds number tends

to infinity. The remainder of the boundary layer
experiences primarily a displacement effect because of
the small acceleration of the fluid in the sublayer, and
the resulting small decrease in the flow deflection angle
is nearly constant across most of the boundary layer.

The interaction of the boundary layer with the external

flow occurs in a streamwise distance; X = 0(R€3/8

5/8

) ,and
the sublayer thickness is given by Y = 0(Re”/°), while
the pressure change is found to be of 0(Re>/%). The
present sphere/cone problem is more complex due to the
axisymmetric nature of the body and the fact that the
approaching boundary layer at the juncture point is not

that due to a flat plate as it was in Messiter and Hu's

analysis. However, an approximate calculation can be
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performed using their analysis to determine the scale
within which the viscous smoothing takes place at the
sphere/cone juncture point. This can be done by using

the local Reynolds number at the sphere/cone juncture
point. Figure (2) shows the results of such an analysis
where the surface pressure is shown against the distance
in physical coordinates. The asymptotic¢ smoothing of

the inviscid pressure gradient at the juncture point is
seen to be achieved for this case in a very small physical
distance upstream and, comparatively larger,but yet

small distance downstream.

{(c) Viscous Shock Layer

These results imply two important points. First, near
the sphere/cone juncture region the correct asymptotic
solution can be obtained provided the viscous set of gas
dynamic equations are such that they retain the boundary
layer and inertia terms in the viscous region and allow
for displacement interaction with the inviscid flow.
One way to ensure this criteria is to use the full
Navier-Stokes equations. However, the full viscous shock
layer equations also seem to be sufficient since they
contain all the viscous terms of the triple deck model
plus the inertia terms that take into account interaction

effects in the inviscid flow.
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The second important point is that the interaction
effects will be significant in only a very small region
of the physical flow and will be difficult to detect
for high Reynolds number cases. |

However, note that the presgnt choice of the
coordinate system would introduce discontinuities in the
longitudinal flow gradients at the sphere/cone juncture
point, as observed for the inviscid flow. It can be shown
also that when viscous effects, as included in the full
shock layer equations, are accounted for, the flow variables
themselves are continuous through the sphere/cone juncture
point (see Appendix A). This can be done by considering
the integral form of the viscous equations and by evaluating
them for an infinitesimally small element in the surface
coordinate system (Appendix A). Note that once again,
the set of equations (A7 , 14, 20) give either a trivial
solution yielding P; = Py and u; = u, ora shock like
jump discontinuity. It is observed that since there is
no physical event that could cause a shock at the sphere/
cone juncture point, the trivial solution is the only
possibility indicating that the flow variables are
continuous at the juncture point for the full shock layer
equations in the surface coordinate system. However the
same conclusion does not apply to the flow derivatives

with respect to the surface distance. This is evident from
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the differential form of the full shock layer equations.
These full shock layer equations (la-h) can be used
to determine the jump conditions on the two sides of
the sphere/cone juncture point, noting that the surface
curvature, x, takes a value of one on the spherical part
and a value of zero on the conical part and also that
the flow properties are continuous through this juﬂ%ture
point. This procedure is similar to that adopted for
the inviscid set of equations. Note also that the jump
conditions associated with the shock shape derivatives
would remain the same as those for the inviscid case.
Thus a proper physical behavior of the full viscous shock
layer equations at the_sphere/cone juncture point is
summarized as follows:
1. The flow variables are continuous at the sphere/
cone juncﬁure point.
2. The use of a surface coordinate system intro-
duces discontinuities in the flow gradients
relative to surface distance everywhere across

the shock layer at the juncture point.

3. Independent of the choice of the coordinate
system, inviscid theory predicts discontinuities

in flow gradients only at the sufface at the

sphere/cone juncture point. However the viscous
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flow analysis of Messiter [7] indicates that
in the limiting case of very high Reynolds
number, this discontinuity would be smoothed
out by the sublayer interaction effect within
the inner scale length.
4. .Within the viscous layer the gradient discontinui-
ties due to the choice of the coordinate system
would tend to drop out of the lead order viscous

equations as the Reynolds number tends to infinity.

3. Thin Layer Analysis

Many studies [13, 14] in the past have used the thin
layer version of the full shock layer equatiocus to predict
flow properties within the shock layer region for analytic
bodies such as spheres, paraboloids and hyperboloids at
high Mach number. The simplifying assumptions inherent
in the thin shock layer approximations cause a change in
the character of the governing equations and thus of the
juncture point analysis presented above. 1In order to
analyze this set of equations, the inviscid form of these
equations are first considered here. Attention is first
drawn to the characteristics of these equations. In the
surface coordinate system the inviscid thin shock layer
equations are given by equations (17, 18, 20, 21) and the

normal momentum equation is given as
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pn(1+|<n) - |<pu2 = 0 (31)

These sets of equations can be-shown to be parabolic in
nature indicating that the characteristics of the flow are
perpendicular to the surface of the body (see Appendix C).
This suggests that for the thin shock layer equations
- information from the body surface is propagated along a
line perpendicular to the body surface unlike the full
shock layer equations where the characteristic lines are
inclined at the local Mach angle of the flow. For this
reason it is obvious that any discontinuity in the flow
derivatives or otherwise discontinuity at the sphere/cone
juncture would be felt all across the shock layer
immediately at the juncture point. This physical behavior
of the inviscid thin shock layer equations is significantly
different from their full shock layer counterpart* and would
be expected to manifest itself rather dramatically in
the solutions obtained.

In order to further study the behavior of the thin

shock layer equations at the sphere/cone juncture point

* It can also be shown from the analysis of the characteris-
tics of the full shock layer equations that their charac-
teristics tend to become perpendicular to the body surface
in the limit as vy + 1, i.e. the thin shock layer
approximation is approached (see Appendix C).
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attention is now directed to the normal momentum equa-
tion given above. This shows that the pressure will
be a constant across the shock layer on the conical
portion of the body whereas a pressure variation will
be encountered on the spherical portion. This can
only occur if a jump is allowed in the pressure at the
sphere/cone tangency point. It is to be noted here
that this need for a discontinuity in pressure is wvalid
for inviscid as well as viscous flows since the normal
momentum equation under the thin layer approximations
remains unaltered. However it is of interest to note
that since under the inviscid thin layer approximation
the information is propagated normal to the body
surface, the bow shock wave is expected to feel the
presence of the sphere/cone juncture point and its
attendant pressure discontinuity immediately above the
juncture location.

It is, thus, important to the whole structure of
the flow that the nature of the thin layer solutions be
delineated. To determine the thin layer "jump condition",
the approach taken here is to revert to the integral form
of the full governing equations, and to assess the
influence of the thin layer approximations on the
generalized jump conditions so obtained. To do this one

must first identify the "thin" layer terms in the general
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analysis, identify their contributions to the integral
formation of the governing equation, and then make the thin
layer assumption. In a manner similar to the £full shock
layer equations, an element of infinitisimally small size
is considered in this coordinate system as shown in
Appendix (A). The integral form of the momentum eduation
(All1) when evaluated for this element, is shown to be
equation (Al2) when no approximation is made. It is now
necessary to neglect from this equation those terms which
lead to thin shock layer approximations. However, at
this point those terms which are neglected in making
these assumptions are unknown. Therefore, one must
extend this derivation to obtain the differential form

of the governing equations and track back those terms
which are neglected when thin shock layer assumptions are
made. This is achieved in Appendix (A). The equations,

so obtained, are given as:

2 2
Py ¥+ o3 Uy = Py toy U, (32)
Py U3 = Py U, (33)
“i Uy
h]. + -2— = h2 + ——2— (34)
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Note that these equations differ from the corresponding
equations for the full shock layer form only in the one
respect that the v component of velocity does not appear
in the present form and thus is unrestricted in its

jump behavior across the juncture point.

The equations (32-34) present the set of conditions
that must be met at the sphere/cone juncture by all the
flow variables in order to accommodate the pressure jump
predicted by the normgi momentum equation. These equations
are gquite similar to the "shock discontinuities" of a
perfect gas except that they do not contain the v-component
of velocity. The fact ?he v-component of velocity does
not appear in these jump conditions is not surprising
since a thin shock layer approximation tacitly assumes the
v-component of velocity to be small compared té the
longitudinal velocity and as such plays a secondary role
in the conservation laws.,

The admissibility of jump conditions in the flow
variables at the juncture point renders the physics of
the flow rather complex in this region. At the bow shock,
such jump conditions would be expected to produce a
discontinuous shock slope at the juncture point. It
would appear that the juncture discontinuity propagates
normal to the body surface through the local characteristics

directly to the bow shock shape.
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It is not really clear how the discontinuities in
the flow variables themselves are accommodated by the
thin shock layer equations. Surely discontinuities in the
gradients are to be expected but more confusing is the
anticipatéd behavior of the viscous flow regions. Here
it is not clear whether discontinuous solutions can exist
since preliminary analysis would seem to indicate that
they would be of the subsonic "expansion shock" type.
Further study of this point is warranted but shall be

deferred from the current effort.
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IV. NUMERICAL METHOD

l. General Considerations

Several methods have been presented for solving the
"thin" shock layer version of the more general viscous
shock layer equations [13, 14]. These approaches have
two 1imitations; First they are based on the assumption
that the pressure gradient normal to the body surface is
established entirely by centrifugal effects, and second,
that the shock wave lies parallel to the body surface.

In an attempt to remove these limitations, methods have
been developed [2, 15] for addressing the full shock
layer equations through a relaxation process wherein the
thin shock layer assumptions are removed by an iterative
process. While, in general, such methods have been
successful, they encounter difficulty whenever the shock
layer thickness becomes large. This difficulty usually
manifests itself as a divergent behavior in the iteration
scheme. In an attempt to overcome this problem, a new
relaxation scheme was developed in Reference [16] where
.an initial solution was relaxed in an artificial time like
manner toward the sought after "steady state" solution.
In this sense the approach is similar to the relaxation
scheme presented by Davis [2], Davis and Nei [17] and

Srivastava, Werle and Davis [18], the primary difference
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being the manner in which the "new guess" on the solution
is defined after a given step in the relaxation process.
The method so developed has been found to work well for
analytic bodies such as paraboloids, hyperboloids and
spheres.

Application of this approach to nonanalytic bodiesl
such as spherically blunted cones encounters numerical
difficulties at a sphere/cone juncture point where the
longitudinal flow derivatives in a surface coordinate
system undergo discontinuous changes. The method of
solution presented here represents an adaptation of the
earlier time like relaxation scheme [16] to problems
with imbedded discontinuities in the flow derivatives.

In order to demonstrate the present approach, the
s-momentum equation of the viscous shock layer equations

is first rewritten in the form

2

2- - -
3 au d“r dr du _
—fan + Bl ‘a_n + 62 d_zs + B3 ES- + B4 + 85 E =0 (35)

where Bl’ 32, 83, 34 and 35 can be obta;ned from Reference
[16] and are given in Appendix (D).

The present time like relaxation scheme utilizes a
two step process in which the first step of the method is
somewhat similar to an alternating direction implicit

method and it yields the flow variables in the shock layer
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region while the second step is used to update the shock
shape itself. This scheme can be demonstrated through
the s-momentum equation (7) written in a two step time

formulation (see Fig. 3) as,

First Sweep *

225" * 3u * 32g"  R" * aR * g 0
—2-t By gy t Bl - gt By 5t B4 t By 3E <
an os
(36a)
Second Sweep n+l
2 2 2 3t 3 9s anz 1l 3n
au *
+ 85 gt Byl =0 (36b)

Note that the "steady state" version of these equations aFe
precisely the "full" shock layer equations.

The boundary conditions associated with star sweep
equation (36a) are typical no slip conditions {(2a, 2b) at
the surface and Rankine-Hugoniot conditions (3a-3g) at the
shock location. However, the boundary conditions associated
with the final sweep are the same as those used in

Reference [16] and are given as,

R=0 (37a)

]
o

i) At s

*
ii) At s n+l (37b)

n
0
=)
[+))
®
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[v]
»®
I
5
o
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There are two points of interest produced by the
sphere/cone curvature discontinuity. First note that the
coefficientgfin the s-momentum equation (7) contain the
surface curvature, which itself undergoes a discontinuous
change from a value of one on the spherical body to a
value of zero on the conical body at the sphere/cone
juncture point. This then causes the B coefficients of
equation (36) to undergo discontinuous changes at the
juncture point. As a second point of interest, it is
also noted that the derivatives of the shock shape with
respect to s, explicitly appear in the governing equations,
such as in equation (36). These shock derivatives have
been shown t; undergo discontinuities at the juncture
point in Section III. This jump condition on the first
derivative of the shock shape is given by equation (26).
A similar jump condition on the second derivative of the
shock shape can be obtained through use of the governing
differential equations.

As a result then it is seen that the governing
equation (36) contains both flow coefficients and shock
derivatives which undergo discontinuous change at the
juncture poiﬁt which necessarily produce solutions with
discontinuous gradients (see Section III). Such results
obviously require modifications in order to obtain

numerical solutions of this set of governing equations
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to assure that finite differencing is not done across
such discontinuous regions. Note that the numerical
difficulties associated with equation (36a) can be over-
come by structuring the finite difference grid system
with a point at the juncture thereby avoiding differencing
across the discontinuity. However difficulty is still
encountered in the second step of the solution process
due to the discontinuities that occur in the shock shape
derivatives. The occurrence of these discontinuities
requires the use of special difference relations at the
juncture point. It will be shown here, through a model
problem representing the second step of the present
numerical scheme that this difficulty can be overcome if
the difference form of the differentials are formulated

such that they comprehend the juncture jump conditions.

2. A Model Problem

The governing equation for a model problem and its
associated boundary and jump conditions are formulated here
in order to demonstrate the concepts associated with the
viscous shock layer solution for spherically blunted cones.

The governing equation for this model problem is taken
to be analogous to the second step of the wviscous shock

layer scheme and is given as

2
a’r aR _
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Note that the coefficients ays 8y, 63 in the above
equation are to be selected so that this equation models
the second step of the viscous shock layer scheme. This
would require that either some or all of these coeffi-
cients undergo a discontinuous change at the model juncture
point in the solution region. For present purposes the
coefficients are taken to be one set of constants in the
region ahead of the juncture and.a different set of
constants aft of the juncture. A comparison with the
second step of the viscous shock layer scheme shows that
the coefficient oy does not encounter any jump whereas

ay and ag do encounter jumps in their magnitudes at the
sphere/cone tangency point. Thus, the present model
problem is set up such that the coefficients Gys Gy g
take constant.values(corresponding to the spherical section)

in one region and different constant values (corresponding

to the conical section) aft of the juncture location.

The boundary conditions to be applied to this model
problem are established to closely correspond to the
second step of the viscous shock layer solution. These

then are given as

R

n

o
i
=

at s (39a)

]
o

R . at S = Spou (39b)
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In addition to these, jump conditions analogous to those
discussed for the viscous shock layer equations must be
established and applied at the juncture point.

At the juncture it is required that the function
R; be continuous but that the first derivative, dR/ds,

be represented by the relation

dR

dRr

“%jump ®jump
Note that the value of K, will be determined here to match
the jump actually encountered by the viscous shock layer
shock derivative at the sphere/cone tangency point.
From the governing equation (38), it is found that the

second derivative, dzR/dsz, also undergoes a jump at the

juncture point as given by the relation

2 2
P - (S‘g + Xy (g3 * Ky
-g. +s. +5.,
ds sJump ] sJump sJump (41a)
where
K, = (aq) - K, (a,)
+s. -S.
2 1 SJumP 1'"1 sjump
(41b)

Ky, = (a,)_ - (a,)

3 3 sjump 3 +sjump

The exact solution for the above equations, associated
boundary conditions and jump requirements can be found easily
and is given as

mns -ns

R = Ae + B e - a3/a2_
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for either region, where

m=-a;/2 + /;§/4 -a, >0 for ay <0
n =0y /2 + /3374 -a, >0 for  a, <0

¢

This gives,

R = (ay/0,) e™ + Ble ™S - M) - a3/0, (42)
when 0 < s < -sjump
Also,
D, (s=s ) D, (s-2s ) =D, s
R=R e 1l max’ _ o (e 1 max’ _ . 1l
2 1
D, (s-s )
+ ao/a, [e T WAX _ 9 (43)
3772
for +sjump < 8 < smax

where D, = /—az for a; = 0 in this region. Equations
(42, 43) contain two undetermined constants B and -2 which
can be determined by using the jump condition (40) and the

condition that R be continuous at the juncture point.

3. Model Problem Finite Difference Formulation

The finite difference form of the differentials in
equation (38) requires special attention at the juncture
point in order to account for the jump conditions associated
with the various derivatives. This formulation is shown

through the figure below where typical mesh points are
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shown with a jump occurring immediately ahead of point 3.

Juncture Point

| l aJlg |

4

Mesh point "a" is located immediately ahead of the juncture
point. While formulating the difference form of the deri-
vatives at point "3", a Taylor's series representation
which avoids any series expansion across the discontinuity
is utilized. For this case, then, a Taylor's series expan-
sion is used from point 3 to 4 and from point "a" to 2.
Points "a" and 3 across the discontinuity are related
through the jump conditions (40, 41). This procedure yields
after proper manipulation (see Appendix E) the following
forms of the difference representations of the differentials

in equation (38) at the juncture point.

R, - R AK
. 2+ 00%)  (44a)
3  A(+K - 3 K))  2(14K,- 3 K,)
' A
(= = > 3 - = + 0(a)
ds® 3 (A7/2014K,- 3 K,) 82 (1+Ky - 5 K,)
(44b)

Note is made here that these expressions contain the constants
associated with the jump conditions (40, 41) and that they
reduce to their proper central difference representation for
zero strength jump (e.g., K1=1, K2=0 and K3=0). A formally
second order accurate representation can similarly he

formulated for the second derivative by evaluating the
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error term of equation (44b) using the governing differen-
tial equation at the point where the jump is taking place
in the solution regime. The error term in Equation (44b)

is given as

«

(K A K ) RI "t Rl e
E = % [ 1™ 2 2 2 a 1 + O(Az)
(1+K1 - 3 KZ)

For the model problem the first term (order A) of the error
expression can be evaluated by first differentiating the
governing differential equation and then evaluatiﬂg it on
the two sides of the boint where the jump in derivatives

occurs. This yeilds

Ra + o0y, Ra + Goa Ra =0 (45a)

and

Ry = 0 (45b)

Manipulation of equations (45a,b) results in

A _ _ A te

1 1 A ]
+ a4 Ra + %a Ra - (Kl -3 K2) a23_R3 (46)

A substitution of this expression in (44b) would result in
a second order accurate second derivative at the juncture

point. For further details see-Appendix (E).
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For the sake of identification in the rest of this
text, the first of these above difference expressions (44)
will be referred to as the "first order accurate scheme",
even though only the second derivative at the juncture
point experiences a formally first order error. The
second of these where the sccond derivative is also
formally second order accurate will be referred to,
here, as the "second order accurate™ scheme.

Before the numeriqal scheme outlined above is used
in the viscous shock layer equations, a test of this
scheme's ability to approximate the exact solution is

essential.

4., Model Problem Numerical Results

Figure 4 shows the variable "R" as a function of
distance for the model problem. The coefficients @y
Gyr O3 in the model equation were chosen to approxi-
mately represent the sphere/cone juncture point of a
40° half angle spherically blunted cone. Severe error
is seen in the numerical solution when the jump effects
are ignored. However, when proper jump effects are
accounted for, the exact solution is virtually recovered
by the present numerical scheme. Figure 5 shows the first
derivative for the same problem. It is noted that the
discontinuity predicted by the exact solution is virtually

captured exactly by the numerical scheme if proper jump
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effects are accounted for in the numerical scheme. Figure
6 shows the second derivative, dzR/dsz, as a function of
surface distance. It is seen also from this figure that
large numerical errors are present when the effects of

the jump are ignored. However, the exact solution is
accurately recovered when proper jump effects are
included.

For the sake of completeness, the model problem was
also solved using the "second order accurate scheme" of
equation (44). It was found that for this case the
numerical difference could not be detected to the scale
of plot shown in Figures 4 through 6. In order to clarify
this point, further studies were undertaken. Figure 7
shows the model problem shock curvature, dzR/dsz, at
the junction point as a function of the step size "aAs"
for the "first order" and "second order" numerical schemes.
Note here is made of the fact that the so-called "first
order scheme" employs a formally first order accurate
representation of the second derivative at only one point
in the mesh system, i.e. at the juncture point. It is seen
from Figure 7 that the "second order scheme"” shows a
parabolic behavior as the step size "As" is reduced, as
one would expect. However, the "first order scheme" does

not show a linear dependence on As but rather a parabolic

behavior. To further detail these results, Figure 8 replots

49



AEDC-TR-77-20

these curves against the square of the step size "aAs".
This figure clearly indicates that both the "first" and
"second" order schemes yield results that approach the
exact solution as though they were second order accurate.
The explanation of these results is given in detail in
Appendix (F) where it is verified that it is basically a
manifestation of the fact that a local truncation error
of order As at a finite number of points in a finite
difference mesh does not necessarily produce a first order
global error.

It is, therefore, established that the so-called
"first order accurate scheme" is essentially second order
accurate. For this reason it was found unnecessary to use

the "second order accurate scheme" for present purposes.

5. Application to the Full Viscous Shock Layer Equations

The finite difference expressions so developed can
now be applied to the solution of the full viscous shock
layer equations for hypersonic flow past spherically
blunted cones. A detailed description of the method for
evaluating the jump conditions associated with the shoék
wave derivatives at the sphere/cone juncture point for the
full viscous shock iayer equations is presented in
Appendix (G). It is shown here, that the proper jump

condition associated with the first derivative, dR/ds,
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at the juncture point can be estimated by purely geometrical
considerations and the fact that the shock wave shape, R,
itself is smooth at this point. However, the jump condition

associated with the second derivative, dzR/ds2

, must be
obtained by using the differential equation itself on the
two sides of the sphere/cone tangency point in a manner
similar to that adopted for the model problem discussed
earlier. This is shown further in Appendix (G). It is
shown in this appendix that care must be used while
evaluating the jump conditions in the viscous shock layer

code. For present purposes, the jump conditions were

evaluated at the first mesh point away from the wall.

6. Overall Method of Solution

The overall method of solution for the full viscous
shock layer equations is as follows. An initial guess
was first made on the shock shape. Based on this guess
the first and second derivatives of the shock distance
were computed using central differences at points away
from the sphere/cone tangency point. However, since
jump conditions on the shock derivatives are not known
initially at the sphere/cone juncture point, a second order
accurate three point backward difference schemes was used
on the spherical part and a three point forward difference

scheme was used on the conical part for the first
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derivative of the shock stand off distance in order to
avoid any Qifferencing across the juncture point. In a
like manner, four point second order accurate schemes
were used for the secend derivative of the shock stand
off distance at the juncture point. The star sweep equations
were then solved by starting at the stagnation point,
where both aG/ag and 3t/s¢E vanish,thus reducing the
governing equations to ordinary differential equations.
The first equation solved was the energy equation so

that thereafter ;11 gquantities such as viscosity related
to temperature could be evaluated. Next, the s-momentum .
equation was integrated to determine a u-velocity profile,
and then the continuity equation was solved to determine
first the shock stand-off distance from equation (10)

and then the v-component of the velocity from equation
(16). Finally equation (11) was integrated to determine
the local pressure level. The coefficients in the
governing equations were then reevaluated using the new
flow variables. Repetition of the abhove steps at a

given station continued until the solution coﬁverged.

The method then stepped along the body surface and
iterated at each station to achieve converged solutions;
To accelerate the convergence process, the previous
station values of the profiles were used at each new step

as a first guess. One difficulty encountered during this

52



AEDC-TR-77-20

iteration scheme was the presence of an oscillatory
behavior of the normal velocity component, v, at some
station in the s-direction [Ref. 16]. This oscillatory
behavior of the physical guantities was overcome by an

under-relaxation scheme as shown:

w=F; w + (1-Fl)w2

where Wy is the most recently calculated physical quantity
and W, is the value obtained from the previous calculated
value of this quantity. It was observed that a value

of F, of 0.2 to 0.4 produced convergence in most cases

1
considered. In general it was also found that such an
under-relaxation technique was needed only for the pressure
and v-component of velocity.

Once the above method had passed over the entire mesh
the. second sweep equations were invoked. The final sweep
equation (36b) was then solved using the two boundary
conditions of equations (37a,b). No iteration of the
final sweep equation was required since it is linear.
However note that the final sweep equation requires the
necessary jump conditions associated with the first
derivative of the shock stand off distance, dR/ds and
also that associated with the second derivative, dzR/dsz.

These jump conditions were evaluated using the flow

properties obtained in the star sweep calculations. The
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final sweep equation was required since it is linear.
However note that the final sweep equation requires the
necessary jump conditions associated with the first
derivative of the shock stand off distance, dR/ds and
also that associated with the second derivative, dzR/dsz.
These jump conditions were evaluated using the flow
properties obtained in the star sweep calculations. The
shock shape obtained from the final sweep was used then
to solve the next star sweep in time. The procedure
continued in time until two alternate final sweeps
converged to a desired degree of accuracy. Appendix (H)

discusses further details of the computer program used

to obtain the present numerical results.

7. Grid Sizes for Shock Layer Solution

The following normal step sizes distributions were
used in the finite difference solution of the full viscous
shock layer equations for the cases presented in the

following section.

Re_ = 1,515 x 10° Re, = 3 x 10°
Nrange an nrange an
0.0 - 0,050 | 0.001 0.0 - 0.005] 0,0001
0.05 - 0.65 0.015 0.005 ~ 0.50 '0.005
0.65 - 1.0 0.035 0.50 - 1.0 0.0099
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V. RESULTS AND DISCUSSION

The general analysis and the numerical techniques
discussed earlier were used to obtain the solutions of
the full viscous shock layer equations for hypersonic
flow past various spherically blunted cones in order to
test the reliability of this technique. 8Since the interest
ih the present study was centered on the sphere/cone
tangency region, numerical solutions were generated only
to about 2-3 nose radii downstream of the stagnation
point for a range of large as well as small cone angles
of the spherically blunted cones. Numerical solutions
were obtained for a wide range of cone half angles from
30° to 0° at various test conditions correspondihg to
available data and other calculations.

Figure 9 shows the sgrface pressure distribution
obtained here for a 30° half cone angle spherically blunted
cone at a free stream Mach number, M, = 10, free stream
Reynolds number, Re_ = 3 x 105 and a wall to stagnation
temperature ratio, Tw/'.l‘o = 0.05. These test conditions
were chosen in order to compare the predicted numerical
results with the inviscid solutions of Inouvye et al.

[8] for the same body. The present calculations for this
case were made using a variable normal step size,-An,

which ensured at least 10-15 mesh points within the
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boundary layer regime while the longitudinal step size,
As, was selected such that a mesh point of the numerical
scheme coincided with the sphere/cone juncture point.
The time step size, At, was taken to be 3.5.

Figure 9 shows that when the shock jump con&itions
are accounted for in the finite difference formulation
as shown earlier, the predicted surface pressure compares
well with the inviscid solution. It is of interest to
note here that the discontinuity in the surface pressure
gradient at the sphere/cone juncture point predicted by
the inviscid theory is virtually reproduced by the
present viscous model for this very high Reynolds number
case. However, in the light of the analysis of Messiter
and Hu (7] for a simple two-dimensional flow with a
curvature discontinuity, one might have anticipated a
viscous smoothing of the discontinuity in the surface
pressure gradient at the juncture point. It és now clear
from the discussion of Section III that the wviscous
smqothing for this problem is of a very mild nature and
occurs over such a short distance that it is not seen
to the scale of the present calculations.

Figure 9 élso presents two other numerical results
for the same test conditions. One of these is the case
where a numerical solution of the full viscous shock

layer equations was obtained by ignoring the relevant
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jump conditions associatéd with the shock derivatives at
the juncture-point and by adjusting the mesh of the nu-
merical scheme such that the juncture point lies between
two mesh points. This case then allows an assessment
of the numerical errors—that are introduced in the
computational method when one ignores the relevant jump
effects associated with the juncture point. Note that
the numerical errors are large in the juncture region
and tend to diminish away from the juncture region. The
second case shown in Figure 9 is similar to the first
except that the mesh system was aligned so that a mesh
point coincided with the sphere/cone tangency point.

This case allows an assessment of the importance 6f the
shock jump conditions on the surface properties.
Apparently these are of a dominant nature in this region
of the flow.

'Figure 10 shows the surface heat transfer distribution
for this case under identical flow conditions. It is
observed that the erratic behavior of the computational
results persist when the jump effects are ignored whereas
the inclusion of these effects tend to eliminate this
erratic behavior completely. From equation (26) it is
seen that the jump conditions associated with the shock
derivatives teﬁd to increase in magnitude as the cone

angle for the spherically blunted cones is reduced. It

is, therefore, pertinent to test this computational

57



AEDC-TR-77-20

technique for lower cone angles in order to establish

the generality of this scheme. Further numerical solu-
tions were obtained for lower cone angles ranging from
20° to 0° in order to assess the influence of the jump
effects on the surface properties., Difficulties were
encountered here while attemptinglto reduce the cone
angle mainly due to the choice of the initial shock shape
for such bodies. This was overcome here by reducing

the cone angle in increments of about 5° with the number
of mesh points between the juncture and stagnation point
kept fixed., This resulted in an increase in longitudinal
step size, As, as the cone angle was reduced but this
technique.was found to work well for all cases that are
presented here. It should also be noted that care

was exercised to at least include 10-15 points within the
boundary layer while selecting the normal step size, An.
Figure 11 through 15 present the results for such a
calculation for cone angles ranging from 20° to 0°. It
is seen from Figures 1l and 13, which show the surface
pressure distributions,that the results of such a cal-
culation compare well with the inviscid solution, when
the proper jump conditions associated with the shock
derivatives are included in the solution scheme. These
figures also show the case when such jump effects are

ignored in the calculation, thereby causing rather
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erratic behavior. Figures 12 and 14 show similar results
for the surface heat transfer rates. Note that Figure 15
for a 0° cone angle (spherical-cylinder body) does not
contain the numerical results corresponding to the no

jump case. This is because the errors were of such large
magnitude at the juncture point that a properly converged
solution could not be obtained.

Thus far it has been shown that the present computa-
tional approach yields good numerical solutions in
comparison with the .inviscid theory [8]. Further comparisons
are now presented with the avaiiable experimental data
for sphefically blunted cones. Figure 16 presents
surface pressure for 7.5° half angle spherically blunted
cone at free stream Mach number, M = 13.41, free stream
Reynolds number, Re_ = 1515, wall to stagnation temperature
ratio, Tw/'r° = 0.0741 and a free stream temperature,

T, = 200°R corresponding to the experimental data of

Pappas and Lee [19]. Significant differences from that of
the inviscid results are noticed at the sphere/cone
juncture point for this case. The inviscid pressure
distributions shown earlier through Figures 1ll-13 predict

a discontinaity in the pressure gradient at the sphere/cone
juncture point., However for the present low Reynolds
number of 1515, viscous effects smooth the discontinuity
completely. The result of the present célcq;ations are

seen to compare well with the data shown in Figure 1l6.
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Note also that similar numerical calculations which do not
include the proper jump effects at the juncture point

are seen to yield seriously erroneous results. Figure 17
presents the ratio of the wall to the stagnation point
heat transfer for the same test case. The comparison

of the present calculations with experimental data when
the jump effects are included is seen to be excellent.
Again large errors are observed when these jump effects
are ignored. Figures 16 and 17 alsoc show the numerical
results obtained by Miner and Lewis [5] for the same
body (wiéh an artificially smoothed juncture point)

under identical test conditions. It is seen from thece
figures that the present results tend to show better
agreement with the experimental data when shock jump
effects are directly accounted for at the sphere/cone

juncture point.
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VI. CONCLUSIONS AND RECOMMENDATIONS

An analysis of the physical flow behavior at the
sphere/cone tangency point has been made. This analysis
indicated that, independent of the choice of the
coordinate system, inviscid theory would predict a
discontinuity in the flow gradients only at the surface
at the sphere/cone juncture point. However, following
the analysis of Messiter [7], it was found that in
the limiting case of very high Reynolds number this
discontinuity would be smoothed out by the sublayer
interaction effect within the inner scale length. It
has also been shown that the use of a surface coordinate
system introduces discontinuities in the flow gradients
relative to surface distances everywhere across the
shock layer and at the body surface at the juncture
point. Within the viscous layer this gradient
discontinuity due to the coordinate system would tend to
vanish to lead order as the Reynolds number tends to
infinity. Analytical jump conditions were developed
at the sphere/cone juncture point for these discontinuous
flow gradients associated with the choice of suxface
coordinate system. Finite difference formulations were
then developed that account for these embedded gradient

discontinuities in order to eliminate numerical difficulties
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in the solution of the full viscous shock layer equations.

Such solutions were obtained by a numerical scheme which

utilizes a time dependent relaxation technique for the

bow shock wave shape. Comparisons of the present results

with inviscid solutions at high'Reynolds numbers and

experimental data at intermediate ones were found to be good.
While the present technique for treating the sphere/

cone juncture region has been shown to yield good results,

the present numerical scheme which is essentially a time

dependent relaxation technique encountered certain diffi-

culties worth noting. One difficulty that does arise is

the oscillatory behavior observed in the iterative

solution of the éhock layer equation at some point down-

stream on the surface. While an under-relaxation scheme

was found to effectively remove this problem for most

flow conditions of interest, it is recommended that in

future studies the continuity and normal momentum equations

be coupled during the iteration process. Another diffi-

culty that was found for this relaxation scheme was the

initialization process used for the bow shock shape.

While this technigue enjoys a greater degree of flexibility

as compared to previous techniques, non-the-less difficulties

were encountered for the low cone angle cases of the

spherically blunted cone studies. Future studies should

consider use of the inviscid bow shock shape as the natural

initial shape for this relaxation technique.
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APPENDIX A

AVALYSIS OF THE FLOW VARIABLES IN THE JUNCTURE REGION

The purpose of the present section is to study the
analytical behavior of the flow field properties across a
sphere/cone juncture point. In particular it is necessary
to determine what, if any, restrictions the conservation
laws place on the flow variables across a curvature discon-
tinuity. For simplicity, only two dimensional flow is considered.

The analysis naturally begins with the integral form
of the conservation laws since they alone are capable of
accommodating discontinuities in the flow variables if they
are called for. Since the viscous shock layer approach em-
ploys approximations to the differential form of the govern-
ing equations, it is first necessary to identify the equiva- '
lent approximations in the integral formulation of the prob-
lem. This is first performed for a fluid element located
away from the juncture point with the results subsequently
generalized to the Jjuncture point.

To do this,first consider the infinitessimal element
shown in the sketch below as being located at some point
s,n away from the point of surface curvature discontinuity.

Note that from the geometry,

As3 = (1 + kxn - ¢An) As (al)

As4 (1 + xn + xAn) As (A2)
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and the unit vectors required in the conservation equations

are given as

10
-
<

(A3)

———————

- -
- \“\
h e
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For small, %1, these yield,

> _ > 8
1
> S -
2
- _ -+
g =& +1/2 « e As +
n2 n s se
Also
S
53 54 S
SO S
n3 n4 n

The continuity equation in integral form is given as,
[] (pv.n)ds = 0 (25)
which can be evaluated on the element shown to yield,

(pzu2 - plul)ZAn + [p4v4As4 - p3v3As3] = 0 (a6a)
so that with application of equations (Al) and (A2)

this gives

(pZuZ - plul)Zﬁn + [p4v4(l 4+ xkn + kAn)

(A6Db)
- p3v3(l+xn-KAn)]As = 0
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so that as As =+ 0

Pauy = Py (a7)
The differential form of this equation can be recovered

using Taylor series expansion to write, for example, that

N >
2]

P, =p + cee (aB)

o
]
+

N >
0]

Pl=p_ ps+o-. (Ag)

which, when used in equation (A6b) gives
(pu)s + [(1 + Kn)pv]n = 0 (A10)

The most important point to note here is that for this
equation no terms are neglected in the thin shock layer
approach and hence, the equivalent thin layer version of
the mass conservation law across a general line is given
by equation (A7). This is not the case for the momentum
equation as shown below. The momentum equation in integral

form is given as:

S5 [(o¥-B)Y + pnlds - /f T ds = 0 (A11)

Evaluating the first (inviscid) integral on the four

sides of the control volume shown in the sketch yields

_ 2 -> -> 2 -
I, = -[(pyu] + pl)esl U Vi€, 120m +1lppu, +Pz)es2

+(p3V§ +p3)3n ]As3

+ pL,U,V e 12An - {p,u,v e
27272 n, 37°3°3 S4 3

+ [p4v4u43S4 +(p4vi +p4)3n4]As4 (A;z)
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which is now rewritten using equations (Al)-(RA4) to give
I, ={2An [(p, + p,u 2) - (p, + u 2)+ 1/2cAs{pu,v, +

1 2 242 17 MY Pa42V2
.plulvl)] + As [p4u4v4(1 + kn + kAn)- p3u3v3(l + kn - KAn)]};S

2 2
+ {2An [p,u,v, - pu.v, = 1/2 xAs( + p.u + + pLu,)]
292V 1%1V1 Py 242 Py 1M1

P L )

+ a5 [(p, + p4v42) (1 + xn + x4n) = (p, +p3v32) (1 + Kn-xAn)]}Zn

D id Saanerensls

Similarly evaluating the viscous term yields,

> >
I2 = (1'1 -1 + Ty g ) 2An + (1'4s 3

n 4
n 1 S mL 4 n 4
> -+ ' (A13)
+(t. e + 1. e ) 2an+ (t, & + v, e.) a8
2 n, 2, s, 3, N, 3, 8, 4

In these relations those terms that would be dropped
in the full shock layer approach have been'identified with.
a single underscoring, while thosé additional terms whose
‘contributions would be dropped in a thin layer appxrocach have
been given a double underscoring. These terms were identi-
fied here by first proceeding to the differential form of
the governing equations, as was done for the continuity

above, marking the shock layer approximations there and then
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tracking these backward to their source terms in equations
(Al2) and (al3).

The most important result to emerge from these equa-
tions is that across a general line (i.e., As+0), the flow

variables in a shock layer are governed by the conditions

that
2 2
Py + quz = Pl + plul {Al4)
PV, = pPaU, Y, {Al5)
Zoois oo

Combining the second of these with the continuity
equation, (A7) requires that in a full layer approach the
normal velocity be continuous across a line, while in the
thin layer model, no such restriction is encountered.

The same procedure can now be applied to the integral
form of the energy equation in viscous flows which is given
as

) .
I7 o(h+ g—)($-3)ds - I TVas + L Bdds =0 (A16)
s s

Evaluating the first of these terms on the four sides of

the element, as before, yields,
= 2an[pu, (h, + 02/2 + V2/2)=9,u, (hy+uZ/2+v2/2)]
27272 2 2 171171 1

+ aslp,v, (b, + uf/z + vi/Z)(l + kn + kAn) = pov,

2 2
(h3 + u3/2+v3/2)$1 + kn - kAn)]) (A17)
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Similarly the viscous terms become

ff ?.V ds = (14 Uq + T4 Vo)2An + (1, U, +1, V,)AS
s ln 1l ls 1 4s 4 4n 4 4

MAARRII vananh . SRANRaI
(Al8)
+ (1, u, + 1, V,) 28n + (1, Vv, + 1, U,)48
2n 2 2 2 3n 3 3s 3 3
and
> >
[ hq @s = -q;24n + q, As, + 4, 2An - q, A8, (A19)

where again those terms equivalent to the shock layer

approximation have been identified with a single under-

scoring and those terms equivalent to the present thin

shock layer concept have been given a double underscoring.
It is now possible to evaluate the resulting constraint

on the flow variables across a line by setting As+o0 to cbtain

2 2 2 2
h. 4+ us/2 + v5/2 = h, +uj/2 + v /2
g * up/2 * Vol l, 17007 e (a20)

Evaluation of this relation in combination with equation
(A7), (Al4), and (Al5) verifies that whereas all variables
p, u, v, and h must meet certain constraints across a line
in the full shock layer approach, the present thin shock

layer concept provides no constraint on the normal velocity V.
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Now that the equivalent thin layer terms have been
identified for a region of continuous surface curvature,
one can proceed to the sphere/cone juncture point. For
this study the element now straddles the juncture point
and interest centers on the relation between the variables
over faces 1 and 2 as s and Asb+o. With this in mind it
is clear that the only terms of concern in the conservation
laws are those integrals over the end faces 1 and 2. Thus,
for example, only the first term of the continuity equation

(A6a) need be considered and thus one can write immediately

that across the juncture point

2 = PqU (A21)
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For momentum conservation, equations (Al2 ) and (Al3)
represent the appropriate point of departure except that
now one cannot employ equations (Al)-(A2) and (A4). None-
the-less it is still clear that only those terms with An
as a coefficient are of interest here and that all others
can be ignored. With this in mind one can proceed to seek
the limit form of the shock layer model as 4s + 0 while
keeping in mind the fact that on each side of the juncture
line the shock layer approximations still hold. With this
approach the results are identical to those presented in
equations (Al4) and (Al5) for momentum and in equation

(A20) for energy.
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APPENDIX B

" DERIVATION OF SHOCK DERIVATIVES

The shock derivatives dush/ds, deh/ds, dpsh/ds
and dvsh/ds are derived in this appendix for use in
the viscous shock layer solution,

In the spatial coordinate system the shock angle,

o, is written as, (Figure 1)

« = tan * (g%—) (B1)
s
where R = Yg + nscos¢ and X5 = Xp - nssin¢ (B2)

Hence the derivative da/ds is evaluated as,

2 ax
do 1l d"R s
ds ° —aR . 2 2 ds (B3)
[1+(a§;) ] dxs
Note that
dxs '
= = cos¢(l+Kns) - ng sin¢ (B4)
and
dns
. rii (1+Kns) tan(a=¢) (B5)
combining (B4) and (B5) yields
dx
g = (eng) Soremr (B€)
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substituting (B6) in (B3) and noting that dR/dxs = tana

yields after certain manipulations,

cosBu d2R

da _
ag = (1+Kns) cos (U"'¢) dxz (B7)
S
It is to be also noted that,
_ dR _ dR/ds
tano = a;; = a§;7ag (B8)

Hence the second derivative, dzR/dxz ; can be shown to be

2 2
dzR _ dzR/dsz ) d xs/ds dR/ds (59
7 2 3 )
dxS (dxs/ds) (dxs/ds)

Substituting for dxs/ds from (B6) and then evaluating
(B7) yields after proper manipulations,

dzR

[ cosz(a-¢) ] - dR [Ksin(Zu-2¢)]
as? (1+xn_)coss

ds cos¢ (1+kn_)

(B10)

da
ds ds

Note now that from Reference [16] equation (A-6) gives

du
sh _ da _
ds = Kl E K K2 (Bll)
where
y-1 Tsh Y=1y o
Kl = (1 - - 5;;) cos(2a+B) - s1nacos(a+B)(—?—) Kl
(B12)
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where K; is given by (A4) of Reference [16] and is of

the form,
T
d sh ' da
== (—) = K
ds 'P_ 1 ds
Also,
-1 Tsh
K., = cosa cosla+B) + == =2 sina sin{a+B)
2 v Psh
Likewise for other flow properties, [Ref. 16]}
%Psh _ . da
ds 3 ds
where,
K, = 2 sin2a
3 (vy+1)
deh o da
ds - N4 ds
and
2 4 cosa
K, = sin2a +
4?2 (y+1)* M sin’a
dv
sh _ da
3s Ke g5 ~ X6 ¢

(B13)

(B14)

(B15)

(B16)

(B17)

where K5 and Kg are given by expression (Al2) of Reference

[161.
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APPENDIX C

CHARACTERISTICS OF THE SHOCK LAYER EQUATIONS

The characteristics are obtained from the inviscid
full shock layer equations (17-22) and the corresponding

"strip conditions" given by

du = %% ds + %% dn _ (Cl)
dv=2as+H an (c2)
dp =32 as + 22 dn : (C3)
dp = %g ds + %% dn (C4)

The terms in the normal momentum equation (19) which are
not included in the thin shock layer version of the full
shock layer equatiéns will be marked here by introduction
of a multiplicative factor, «, which would be zero for
the thin shock layer equations.

Using Cramer's rule to identify the derivatives

gives

3u - |al/|sB] (C5)
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dn ds 0 0 0 0 0 0
0 0 dn ds 0 0 0 0
0 0 0 0 dn ds 0 0
0 0 0 0 0 0 dn ds
|B| = 0 P (I4kn)p 0  (l+kn)v u o 0
(14+xn)pv pu 0 0 0 0 0 1
0 0 a(l+kn)pv apu 0 0 (14xn) O
0 0 0 0 —(1+n<n)va2 -ua2 (1+xn)v u
du ds 0 0 0 0 0 0
dv 0 dn ds 0 0 0 0
dp 0 0 0 dn ds 0 0
dp 0 0 0 0 .0 dn ds
|lal = |-xkov (l+kn)p 0 (l+xn) v u 0 0
-Kpuv pu 0 0 0 0 0 1
|<pu2 0 a(l+kn)pv apu 0 0 (1+xkn) 0O
0 0 0 0 -(l+en)va® ~ua® (L+cn)v u
(c6)

Setting |B| = 0 , expanding and simplifying yields

2

[udn -(1+Kn)vds]{udn3u(u2-a2) - adn“ds u2(1+Kn)v

2

adnzds v(l+nn)(u2-a2) - dnds u(1+nn)2(a2-uv2)

2

dsdn2 v(l+Kn)u2a + ds“dn v2(l+|<n)2 ua

apzv2(1+|<n)2 ds2an u —(1+Kn)3ds3v(—av2+a2)} = 0
(C7)

+
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Note that

udn - (l+kn)v ds = 0
gives the equation of a streamline in this coordinate system.

With further simplification, the final expressions for the

characteristics can be written as

dn a2
(5= = (Cc8)

~uv(l+xn) z (l;xn) v@é(u2+av2_a2)

Note that when a=l1, which corresponds to the full shock
layer equations, the characteristics are inclined at a

Mach angle in the supersonic flow. However, as & approaches
zero, corresponding to the thin shock layer version of

these equations, the characteristics in the flow field

tend to become perpendicular to the surface. This result
can be verified by beginning with the thin layer equations
and repeating the above derivation. For the thin layer case

it can be shown that the characteristics are given as

2 2

- as2p222(1+¢n)? [dnu - (1+xn)vds}Z = 0 (C9)

Note that this equation indicates that either
2

ds” =0 (c10)

or [udn - (1+|cn)vds]2 =0 (Cll)
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Since (Cll) represents the equation of a streamline in
this coordinate system, the equation for the characteristics
are given by (Cl0). Along these characteristics, compatibility

conditions must be satisfied, these being obtained from,

dszp(l+xn) [—uazdn +(1+Kn)va2ds][—pKuzdn+p(1+Kn)udu

+ (l4kn)dp + p(l+kn)kuvds] = 0 (C12)

Note that this equation (Cl2) is satisfied along a char-
acteristic line ds=0 indicating that no other additional
condition need be satisfied. It is, therefore, seen that
the inviscid set of thin shock layer equations predict
coincident characteristics normal to the surface of the
body. Davis [20] discusses the characteristics and the
nature of these equations (i.e. whether they are elliptic,

parabolic or hyperbolic) when viscous effects are included.
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APPENDIX D

ADI FORMULATION OF S-~-MOMENTUM EQUATION

The s-momentum equation is written in the following

form in the surface coordinate system,

pu Ug Kuvp Pg
TIweny -t PV * o5y + TFeny
= [ez/(1+rn)2(r+n cos¢)j][(l+nn)2(r+n cos¢)j-r]n
(D1)
where

T = u[un - xu/(1+kn})]

Using the transformation given in equations (5a~h) this
becomes

2~ - -
3 au - au
a2t eiam e it ey Ty =0 (p2)

where Gys Gy, O3 and G4

Note that u;h and P;h appear in the coefficients

t | ]
o, and ¢3. From Appendix (B) Uon and Pgp are written as,

are given by equations (Ba-d).

_ doe _

Ysh T X1 & K, (D3)
' _ da

Peh = X3 3ds (D4)
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where da/ds is
stituting do/ds

the coefficients

given by (Bl0) of Appendix (B). Sub-

in (D3) and (D4)

e, and o yields

and then evaluating

_ d°R dr
"2 T2 7% Y3a t s (D5)
a2 arR
®37 Y5 2 * Ve as t V7 (D6)
where,
Yq = *Ac K, + B+ C+ D (D7)
_ Ksin (20-2¢)
Y3 = A Ky cos$ (1+kn_) (D8)
cosz(u—¢)
Yy = A Ky (I+xn_Jcos¢ (D9)
and

A= 4 Psh "sh  *Mgn pu

2 l+kn . n =-

€ Mgy sh’ yu
g — _ 'shVsh%sh “sh v

- 2 l+xn _,n -

€7 Wgp sh’
C=——Kn§h_i_r-1-

l+Knshn 5
b KRy X cos¢ n_p kD p

(1+Knshn) r+n,, cosén (l+xnshn)

104



- AEDC-TR-77-20

In a similar manner,
1

n
_ = _ "sh
Y7 = Al PE —nsh n P ) {D10)
_ P K sin(2a-24).
Y6 = 721 p_ *3 Gos(1ren ) (D11)
_ p cos (a -3)
Ys = B Py, (l+kn_, )cosé ) (D12)
and
A = - Psh "sh “sh 1
1 2 {1+xn . n} =
€ ¥gh sh L

hence equation (D2) can now be written as

2= 2
] au d R dR
gt oy gty Tt vg Fg t v
an ds
b CRBy SR 28
Vs 222 Ye das " Y7 4 3¢
Further rearrangement yields,
2- 2
) M a“r - dR
—7 e g il *rg) 3 +lygu +vg) g
an ds
¥ lygd + yq) + oy %% = 0 (D13)

For the first half time step of the present alternating
direction implicit method, this last expression is

written as
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First Sweep:

¥ = £ + at/2
- - ‘ %
223 PRI T [aan _3RG, Gt 3R
3n2 1% 2 122 3t 3 3s
-
* * 3 - 0
+B4+Bsﬁ— =

For the second half

(D14)
time step equation (D13) is written
as
*
Second Sweep: tn+1 =t <+ %E
3* a2Rn+1 _ B* aRn+l ‘8 aRn+l +[325 ‘s Ei
2 asz 2 3t 3 29s an2 1l 3n
3 *
+ Bg 3 + 34] = 0 (D15)
where,

B3 = Y3u * g

Bg = o4

(D16)
However note that equation (D15) for R must be independent

of n indicating that the coefficients of this equation
must be independent of n.
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It can be shown by proper substitution that,

83/82 = -2k tan(ﬂ-¢) (Dl?)

whereas by using the first sweep equation

2- - -
? ou du
[;2-_4' 81 n + 85 € + 84]/82
a2r" . 2" 2P

- + 2x tan(a-¢) oR? (D18)
2 At it 98

Substituting all of this the final sweep equation is

given as,
2. n+l n+l 2.0
1—37—— - 2x tan(o-¢) %%——— - %E gL ii%—
es 98
aR“ 2 * n :
+ 2k tan(u-¢) -as— + A_t (2R - R ) = 0 (Dlg)

107



AEDC-TR-77-20

APPENDIX E

DERIVATION OF FINITE DIFFERENCE EXPRESSIONS

AT A JUNCTURE POINT

Consider a typical mesh system where a juncture
point occurs immediately ahead of point 3. Point 'a'

is taken to bé immediately ahead of the juncture point.

Juncture Point

N

1 2 3 4 5

Jump condltlons associated with the first and second

derivatives at the juncture p01nt are given in the

form
_ dR
(T) = Kl (d_s) 3 (E1l)
2 2
d"R d°R . ,dR
(—) = (—5) + K,(32)_ + K . (E2)
d82 a d52 3 2'ds 3 3

where Kl' K2 and K3 are known and are given by equations

(41b) for the model problem. Using Taylor's series

expansion,
] Az 11 A3 1
1 Az Tt A3 LA
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Rearranging this, (E3) can be rewritten using (El) and

(E2) as,
2 2
_ [ ] - -A_ A_ A [ ]
R2—R3-R3(Kl ZKZ)A+2 K3+2—R3
A3 | I
- g—' Ra + ¢ o (ES)
so that finally,
(R,~R,) AK ) :
Ry = L 3 + 0(a%) (E6)

Using (E4) and (E5) and simplifying yields,

A
3 2% A a2 A
7~ (K] = 3 Ky +1) 37— (k) = 3 Ky+1)
(K A K )R"l R'll
-FI=2_2 3 23 45,4 o0? (E7)
(Kl - -2- K2+l)

Expression (E7) gives a formally first order accurate
finite difference form of the second derivative immediately
behind the Jjuncture point. Note that the first order

error in (E7) can be estimated for the simple model

problem through differentiation of the differential
equation on the two sides of the juncture point. From

the model equation (38) differentiated and evaluating

at "a" and "3", one obtains
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Ry *+ o, R, +oa, R, =0 (E8)
181 [ | t
R3 + a13 R3 + 62 R3 = 0 (E9)
so that
111 A 1901 A 11
Ra = Ky = 3 KRy = lay (K = 3 K)) =0y, 1Ry
' A
= RylK; oy, = ay(K) = 5 K)+ oy K3 = Ky oy,
(E10)
The error term in (E7) can now be estimated as,
blay (Ky= 5 K)=ay 1 o0 [ s
E = 3 R —[R[{uK—u.(K-—K)
A 3 3 la 2 271 2 72
3(K1- v K2+l)

+ oK 1) 4 Ky ey, A] /3u<1- % K,+1)  (E11)

Note that when (Ell) is substituted in (E7) and formally
'the second order accurate finite difference form of the
first derivative, dR/ds, is utilized, this would result
in a formally second order accurate finite difference
form of the second derivative, dzR/dsz.

The above difference formulations are valid only

when a mesh point of the finite difference scheme coincides

with the juncture point where discontinuities in derivatives

are encountered., These formulations need to be rederived
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when the juncture point lies between two mesh points.of
the finite difference solution scheme. This is achieved
in the following analysis.

Consider the mesh points as shown where the juncture
point lies at a finite distance of away from point 2.
Points aand b are immediately ahead and behind the

juncture point.
Juncture Point
ath

1 2 K 4

Let n represent a fraction of the step size A. Thus,

n = EA 1<E<0 (E12)

<
—

Expressions are now sought for the shock derivatives
at points "2" and "3" with an embedded jump occurring

from "a" to "b". Using Taylor's series expansion,

L} Az [ A3 L
Rl = Rz - ARZ + 7 Rz - T R2 + ... (E13)
2 3
_ | ] A 2 [ ] A 3 | B A ]
Ra—R2+AER2+T5 R, + 7 & Ry + ees (E14)
' Az 2 1t A3 3'|||
Ry = Ry + A(1-E)Ry + > (1-¢) R, + g(1~8)"Ry + ...
(E15)
1 L] | | A2£2 ret
Ra = Rz + AERZ + T— Rz b (E16)
R\ =R, + 08 Ry, + ... (EL7)
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After considerable manipulations these give,

2
v (E+RIRy + Ry + 53— (1-F) °Ky=R, (E+A+1)
R2 = ) 3 + 0(A)
[E+A _g___,_ EA + (1;E) ]
(E18)
and
R' = {R,-2R.P,-R, (1~2P,)+ A2(1- 2)K Y/[A({P,+P )]+0(A2
2 = 1R3—2R;Py-R, 2!t 7(1-E") K 1P, )
(E19)
where
Py =& +A
: 2
_ & 12
P, = 5 + EA + (1-&8)7/2
In a similar fashion one obtains,
R. = [R,+R,P,~R,(14P.)~ 22 £2K.]/[(P.+P,/2) 42140 (8)
3 = [Ry+R P-Ry(14Py)~ 5= £"K31/[(P,+P,/
(E20)
and
' a2 2 2
R3 = [2R4P2+R3(1-2P2)—R2+ 5= E K3]/[(Pl+2P2)A]+0(A )
(E21)
where

d
|

L = [E(R= 5 EKy)+(1-8))

' 2 1 2
, = [E(1-8) (Ry- 5 EK)+ 3 + 3(1-8)%)

o
i
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APPENDIX F

-

ERROR ANALYSIS OF THE "SHOCK JUMP" MODEL PROBLEM

For the simple "shock jump" model problem studied in
Section IV the exact solution is known and thus a detailed
study of the accuracy of the finite difference scheme
can be undertaken.

First, in order to establish the truncation error
of the finite difference expression (44b) at the juncture
point, the exact values of the shock shape, R, were used
in this‘expression to obtain a numerical estimate to the
second derivative, dzR/ds2 , at the point of discontinuity, -
i.e., at S=0.§. Figuré 18 shows that this derivative
linearly approaches its exact value in A, indicating that
the finite difference form (44b) is indeed first order
accurate at the point of discontinuity. Note also,
from this figure that at any other point such as 8=0.5
where no discontinuity of any kind is present the finite
difference expression (44b) is seen to be second order
accurate as anticipated since in such a case the jump
constants Kl’ K2 and K3 take values of 1, 0 and 0O
respectively. These results clearly indicate that the
local trqncation errors are of first order at a jump and
second order everywhere else. It is, therefore, evident

that the second order type behavior observed earlier can
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only be explained through a study of the overall truncation
error of the numerical scheme.

In order to better demonstrate this concept a simpler
problem for which an analytical assessment of the error
is possible, was considered. Thus we take the simple

problem given as

—=% - bR = 0 (F1)

Subject to the boundary conditions

R(0) =0 and R(1l) = 1 (F2)

which has the exact solution as,

e
] (F3)
e .

Consideration is now given to three different schemes for
numerically solving the same problem, the first two of
which establish the method for assessing the overall
truncation error and the last of which directly addresses
the present problemT

Case (a) - Consider=the case where dzR./ds2 is
represented by a second order accurate expression in the
entire solution region. In such a case it is possible
to show straightforwarély that the difference solution
approaches the exact solution (F3) quadratically in As.
Since this is the basis for later studies, it is shown

below in detail.
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The difference version of equation (Fl) is given as

2,2 _
Rjyy = Ri(2 + ba%)+ Ry, = 0 (F4)
R,=0 and Ry=1 (F5)

which has a sclution of the gorm

_ i i
R; =A s +B s? (F6)

where

b242  |/pa?

_ 2.2
51’2-'1+Ti T+bA

(F7)

Applying the boundary condition yields the final solution

5y - 55
Ry = [sN - sN] (F8)
1l 2

In the limit of zero step size, A, the difference solution
(F8) should approach the"exaqt solution (F3) quadratically
in A. To verify this, éonséder now the limiting process,
as A » 0. First write that

2,2 3

. 3
= ba ,bia
51'2 =1 + bl + 5 + ¥ + ees (F9)
and note that
i g8/ (F10)

81 1
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which is now rewritten as

2,2
b“aA

i s/4 log, (1+bA) s/ loge(1+ —7——) 3p3,3
sy = e e {1 - =

8

4 4 6,6
_ 25 .55 3b°4a 25b°4A s/A
128bA +.-..+ 8 + 128 "'}

Expanding 1oge(l+x) for small x and rewriting the

resulting expression in terms of exponential functions

we have,
s/A bs -bZas/2 b34%s/2 b2hrs/2 -bia3s/s
Sl = e e . a see X B e
33
p%a5s/24 s/A log, (1- 2240
xe ...e
44 33_1 s/A

Note that the first order contribution in A, is precisely

cancelled out yielding,

s/A bs 3,2
s, = e [+ 2L 24 )0+

It is seen, therefore, that si/A approaches its exact
solution, ebs, quadratically in A.
Due to symmetry, a similar analysis for the remaining

terms results in the following forms.
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si = PP+ a2+l s ...
i =bs 2 3

s, = e (1 + AAT + ByAT + seel

sf = eb[l + aA2 + bA3 + cecenel
N _ =-b 2 3

52 - e [1 + alA + b]-A + .l..]

Hence the difference solution, as A + 0, can be written
as
(ebs-ébs)+az(Aebs-Alébs)+'A3(...)

R, = (Fll)
- (eb-éb)+ Az(aéb—aléb)+ Agi:..)

which can be manipulated to the form

bs =-bs
_ € - @ 2

Figure 19 shows the computational result verifying this
analytical derivation where the function "R" and its de-
rivative, dZR/dsz, are seen to approach their exact
values as a straight line in the square of the step size,
Az.

Case {b) - Consider now a case when equation (Fl) is
solved with an algorithm that is first order accurate
in the entire solution region. To do this the source
term R of difference equation is written at the midpoint
between two mesh points, point a, using the average value
of Ri and Ri-l to approximate R,. A centered second order
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e -
difference is used to represent R; . The resulting first

order accurate difference scheme is given as

(2-b°4%) -R, (4+b%2%) 42, , = 0 (F12)

Rin 1

Using the same boundary conditions as before,

R =0, Ry = 1 (F13)

1
2

N (F14)
2

where now

2,2 3,3
_ 3b“a 17b™ A
Sl_l+bA+ 4 + 32 +l.l.
2,2 3,3
4 3b“A° _ 17p°a
s, =1 ba + 3 35 + ....

Following the same procedure of manipulation as before,
it can be shown that

2 3,2 :
s] = (ebs e-b As/2 eb A"s/3

ceesd)

2 ' 4 3
(e3/4 b~ As e 9/16 b'4A”s o)

Note, here, that the first order term in A, does not
cancel out as in the previous case and the final expression

can be rewritten as
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2

si = eP[(1+ EZAE S W 6 E S S

Figure 20 shows the computational result verifying that

function "R" and its derivative dzR/ds2

approach their
exact values linearly in A.

Case (c) - Consider now the case when one point in
the finite difference scheme has a first order error while
all other mesh points are formulated in a second order
accurate sense, This case is then similar to the original
model problem of Section IV where the local truncation
error was second order at all points except one where a
first order local error was encountered. Through study
of the present problem one can more easily see how the
introduction of a first order error at a single point
does not cause the global truncation error to rise to a

first order level.

For this study consider the following mesh system:

. h-1 h h+l E
A B

0 i=N

1\,

i
where in regions (A) and (B), the governing equation (Fl),
will be written using a second order accurate central
difference expression while at the mesh point i = h,

a first order accurate version of the governing equation

(F1) will be used by again evaluating the source term R
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between two mesh points. Note that this procedure is
analogous to the earlier model problem (Egq. 38) where

at the model juncture point fhe difference equation was
first order accurate due to the jump effect while at all
other points it was second order accurate. The'advantage
in the present simpler problem is that following the
procedures of cases (a) and (b) a compact analytical
error analysis can be made.

The difference equations to be solved are given as

2,2 _ . ) .
Riyp - Ri(2+b°a%)+ R, , =0 i=1, ... h-1 (F15)
2.2 2 2 N .
R; 1 (2-b"A%) - R, (4+b"2%)+ 2R, _, = 0 i=h (Fl6)
and
R - (2+b2A2)R + R =0 i = h+l N-1
i+l i i—l f [ L )

(F17)

subject to the boundary conditions

i=0 R =0
° (F18)

i=N RN =1
A finite difference solution of (F15) between mesh points

i=l to i=h-1l yields the folloﬁing result
i i

S - S
= _1___2 ¥
Ri Rh [sh . Sh] (F19)
1 2

whereas between mesh points i=h+l to i=N-1 one obtains

_ i i
R; =As] + B s, (F20)
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where,
A Rh-sg{u-RhSIf)/(N-sgs?n
1 1 : 1 1l
N h N
B_(I_Rhsl)/(N_szsl)
- “h 2 - h
sl 8,
and
2,2 3.3
_ b~A b~ A
Sl—1+bA+ 2 + 8 +-|-l
2,2 3.3
52=1_bA+b2A -beA +..¢.

Note that both solutions (F19) and (F20) depend on Ry
which is still unknown. The difference equation (F16)
for the "h" point relates Rh to Rh+1 and Rh-l through the
expression

Rh+1(2'b2A2)'."2Rh—1
(4+b2A2)

Rh=

Since Rpsi and R, , are known in terms of R, from equations
(F19) and (F20), this equation would, after proper mani-
pulation, yield an expression for Ry, in terms of known
quantities such as b and step size A. It is then possible
to analytically assess the error term in this expression

in the limit of zero step size. Note also, here, that

this error would propagate to other mesh points through
the. solution (Fl19) ahead of this point and through the

solution (F20) behind the mesh points., It is, therefore,
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necessary to first estimate the error in "Rh" before
an attempt is made to analyze the errors at any other
points ahead or behind it, Rh can be rewritten in
the following form

p2a?
1 [Rh+1(1' 7 )t ®h-1,

R
h 2 (1+ b2a%/4)

Substituting R, , from (F20) and R, _, from (F19)

and after some manipulations one obtains the following

expression:
h h h h ‘
P ST B Wil PIRG Wil NP o/
h 2 K, N _ N N _ _N 2
1~ S2 81 7 82
where,
_ N _h h N _ h+1 N h+l
Kl = (s2 s, = S, Sy S, Sq + Sy 8, )
and
_ h h+l h h+l
K2 = (s1 s, - S, Sy )
Consider now the term
h h
G W Ut
T2 K, N _ N
51 2
which can be reformulated as,
N N _ h __h
pe 2 T - i
s, 2° 71 s 271 s, - 8,
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Noting that,

1-% _,1,b8_p4d
S,- 5 2 ' 32
and
t-% _ _1,ba, %8
S,= 5q 2 4 32
h h N
s, - 8 2.2 2,2 s
Ry = () (1= 210 A 2 g+ >
81 =~ S, S2
N h
b3a3 o 51 1, ba b33 §) = S,
—T...——H -i Z—+32 +-..)}(N N)
s) B) ~ 8,
+ vee.l
Expanding this,
h h _h _h N
575 BTS2 %2 1 pa bl
BTN _ Nt T R Gt T
81 - 82 8 T 8 S2
N h _h
51 _1,ba, p2a3 | y (17 %2
h _h
_BT s p2a? _ptat
N- N 2 4 ® 5 0 [ B B BN ]
sl Sz

The extraction of the error term from this expression as
A approaches zero is a process involving further manipula-

tions, however if it is first noted that
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bs
s? = e h [1+ A A2 + B A3

+ .-o.]
Where A and B are known constants, and that a similar

statement holds for the terms sg ’ sf and sg . then

it is possible to rewrite R, as

bsh -bsh

R, = [Sp—"pf— + 00s%
e - e

It is, thus, observed that the first order local trunca-
tion error at point "h" contributes to higher order

global errors and the difference solution still approaches
the exact solution quadratically in A. Note also that
one can assess the error in R’ from the differential
equation

2
( ) = (b R)
as2 h h

so that on substituting for Rh’ this finite difference

solution gives

bs ~bs

2 h h
d“R 2 ;e - e 2 2
(=) = Db" [ — 1 + b°0(A°)
ds® h ef - &7
Hence
2 2
d™R d“R 2 2
ds® h d52 exact
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indicating that the finite difference second derivative
solution would also approach the exact solution quadrati-
cally in A. It is now possible to direct atteﬁtion to
the analytical difference solutions in regions (A) and
(B), ahead and behind of the present mesh point "h". From
equation (F19) it is directly seen in the light of previous
derivation and the fact that R, has a second order error
associated with it, that the difference solution in
region (A) would approach the exact solution as second
order accurate in the limit of zero step size, A. The
same result is also true for the region (B), since this
region-is written as second order accurate. Figure F-2
shows the computational result for this case where a
first order accurate difference equation was used at a
point s = 0.5 while all other mesh points were written
in a second order accurate sense. The function R and
its derivative ézR/ds2 are seen to approach their

exact value as a straight line in the square of the step.
size, A, verifying the present analytical result. There
remains now only the gquestion as to when would this

first order local truncation error in the numerical
scheme produce an explicit first order global error.

This point is addressed through Figures F-3 and F-4. It
is seen from Figure F-4 that when a computational scheme

utilizes the first order difference equation in a fixed
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region of the entire solution regime, i.e. between

023 <s < 0.7, the function "R" and its derivative,
d2R/ds2 approach the exact solution at a point s=0.5
linearly in A indicating that the overall truncation
error is of first order. Figure F-3 shows a similar study
where the first order difference equation was only used
on a fixed number of points, i.e. (N)O.S -3 < (N)O.S <
(N)O.S + 3, in the entire solution regime. This figure
shows that in this case the function "R" and its
derivative, dZR/ds2 approach the exact solution as
second order accurate scheme in the step size indicating
that in this case the overall error is of second order.
It is, thus, clear that a local error of order A& will
not sum up to a global error of order A 1if it only
occurs at a finite number of points as the mesh is
refined. The global error will only rise up to first
order level if an infinite number of points contribute

~

a first order local error as the mesh is refined.
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APPENDIX G

NUMERICAL EVALUATION OF THE JUNCTURE POINT JUMP CONDITIONS

The first and second time sweep of the numerical scheme
for the viscous shock layer solution has been discussed
in Appendix (D) as represented by equations (Dl4) and
(D15). Both of the time sweep solutions require informa-
tion about the jumps. associated with the terms, azk/as2
and 3R/3s at the juncture point. The fumg condition
associated with the first derivative, dR/ds, is obtained
straightforwardly from geometric considerations as

dR)

drR (61)
ds sphere

= (l+n8)(ds cone

However the jump condition associated with, d2R./ds2 must

be obtained from the momentum equation (D13), which may

be rewritten in the form

2 U+ a,U_ + y,0 + y, + a,u
@R _ 5 tan(a-¢) B ;[0 1n 4 7 475,
2 ds . . -
ds (72 u + 75)

-0 (62)

Note that the last term in (G2) must be independent of n.
Hence, evaluatin§ (G2) on the two sides of the juncture

point yields,
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1
(R )sphere = 2tan(a-¢) (R )sphere + (Fe)sphere =0
(G3)
e
(R )cone + (Fe)cone =0 (G4)
where,
U__+o,0_ +y,0 + vq + o, u
Fe = [-An_L1ln 4 7 4%, (G5)
(you + vg)
These two can be combined to give
1t [ § t
(R )sphere = (R )cone + 2tan(a-¢) (R )sphere
+ (Fe)cone - (FE)sphere =0 (G6)

The term "Fe" should be a constant across the shock layer
since the associated equation (G2) is independent of the
normalncoordinate, n. This was verified numerically at
every stage of the calculation procedure for the viscoué
shock layer code. It was also found that there usually
was a point in the shock layer where the denominator

(y,u + Y5) in equation (G6) would pass through zero. It
is, therefore, obvious that at such a point the term "Fe"
would be in error due to numerical truncation process and
care should be exercised to avoid any such region while

evaluating these jump conditions. For the present viscous
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shock layer code the jump conditions were evaluated at the
first grid point away from the wall.

Another difficulty that was encountered in the numerical
evaluation of the shock jump conditions stemed from the
manner in which the s-momentum equation (D2, Appendix D),
was solved in the present form of the viscous shock layer

code. The sketch below shows a typical finite difference

mesh configuration for the present scheme.

Due to the nature of the ADI algorithm as applied here,
ié was necessary to solve the star time sweep equations
for the flow properties u, etc. at the numbered points
wiv, "2", "3" etc., while the final time sweep equations
were solved for the shock shape at points-co, Cl’ Cz, C3
etc. The jump conditions given by equations (Gl) and

(G6) were to be applied in the middle of the second sweep
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mesh from points "a" to "b" of the sketch. This then
requires that the driving function, Fe, defined in
equation (G5) be evaluated at points "a"™ and "b". To
do this properly, the value of Fe at "a" was obtained
by extrapolating its wvalues at C0 and Cl to "a" while
the value at "b" was obtained through extrapolation of
Fe's values at points C2 and C3. The results thus
achieved were found to be consistant throughouf the

calculations.
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APPENDIX H

COMPUTER CODE FOR THE FULL VISCOUS SHOCK LAYER

EQUATIONS FOR SPHERICALLY BLUNTED CONES

The following computer code, written in Fortran IV

was used to obtain numerical solution of the full viscous

shock layer equations for hypersonic flow past spherically

blunted cones. The input quantities are:

Main Program

DT
IE
IEND
REYIN
RMAC
BO
TEMP
GAM
SIGM

XFACT

THETA1

THETA

Time step size.

Number of mesh points in the n-direction.
Number of mesh points in the s=-direction.

Free stream Reynolds number, Re_.

Free stream Mach number, M_.

Wall to stagnation temperature ratio, Tw/To.
Free stream temperature, T_ in degree Rankine.
Ratio of specific heats, y.

Prandtl number, o.

Convergence criterion for solving the governing

equations by iteration.
Sphere/cone angle for which solution is desired,
Sphere/cone angle whose solution is used as an

initial guess on the shock shape.

137



AEDC-TR-77-20

DTHETA Increment parameter which controls the increment

in angle, A®6.

W Under relaxation parameter required during a

profile iteration procedure.

W Relaxation parameter used for two consecutive

final sweeps.

J n-point across the shock layer, where shock
jump conditions are evaluated, also convergence

criteria put for profile iteration.

NJINC Number of mesh points between juncture and

stagnation point.

DY Normal step size, An.
NITER Number of profile iterations.
NTIME Number of time cycles.

Input Parameters

THIN Positive when thin shock layer equations used.
THINI Negative when full shock layer equations used.
RUMP Positive when jump conditions are included.
SWFAC Positive when wall slip iﬂcluded.

SSFAC Positive when shock slip included.

AHALF Positive when an initial guess for half the

longitudinal step size of input guess needed.
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Output Quantities

MINF Free stream Mach number.

TW/TO Wall to stagnation temperature ratio, tw/to.
, k%2 % * % % _1/2

EPS Defined as,  [n (u /Cp)/P°° u, a) / .

REY(INF) Free stream Reynolds number, Re_.

s £, surface distance.

X Axial distance measured from nose.

RSH . Shock distance measured from axis.

NSH Shoék stand off distance normal to body surface.

XSH Shock axial distance measured from body nose
point.

R Normal distance to the body surface from the axis.

NSHP dns/dE.

USH u-component of velocity behind the shock.

VSH v-component of velocity behind the shock.

TSH Temperature behind the shock.

RSH Denéity behind the shock.

PSH Pressure behind the shock.

USsP dush/dE.

vsp dvsh/ds.
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TSP drsh/dE.
RSP dpsh/dE.
PSP dpgy/dE.
LI Y]

PWALL Pressure at the wall, p /pw u.”.
PW/PO Pressure ratio at the wall

. . s < * k%)
CF Skin friction coefficient, ZTw/pw u_".
STAN Stanton number, qw/(HO—Hw).

* * %3

HEAT Wall heat transfer, qw/(p°° u_ 7).
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List of Subroutines

Name

'DERIV

GEOM

SHVALS

MANISH

PUSHPA

PEQSO

BOUND

BOUND1

Function

Calculates the derivatives of the initial shock

shape.

Calculates body geometry for any given longi-

tudinal location,s.
Calculates properties behind the shock.

Utilizes shock jump conditions to evaluate new

shock shape, final sweep.

Evaluates further shock quantities using new

shock shape.
Solves tridiagonal difference equation.

Prdvides initial coefficient for derivative

boundary conditions.

Provides initial coefficients for derivative
boundary condition at s=0 on the shock for

final sweep.
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Flow Chart for Sphere Cone Program:

START
Read Input
data
* No Shock Shape._sz_ St
Convergence oP
Calculate Initial
Shock Derivatives
| I FINAL
) SWEEP
I=20 Solve Shock Shape
[ Egqn. for Rsh
Y
I=1I+1
Calculate Surface ?
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STAR No
SWEEP
Calculate Shock Test if ?es
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Ush’ Pgnr Pgnr €tc. *
Increase
Solve Governing §
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for Final

Sweep
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FORTRAN IV G LEVEL 21 MAIN DATE = 76296 05/03/31
ocoi IMPLICIT REAL#*8 (A=H, D=2Z)
0002 COMMON/MAINL/
1 T1(201)+sT2(201)¢TCC(201)sU1(201)4U2(201)4UC(201),
1 V1€201),V2(201),VC(201)+P1(201),P2(201)+PC(201),
2 TIN(201), T2N(201)+TCRN(201)+UIN(201),U2N(201),UCN(201),
3 TINN(201)4T2NN(201),UINN(201),U2NN(201)+PCN(201)+
a AA(201),BB(201)4RVISC(2013,CON(201),VISC(201),
s RCON(201) ,CPST(201).RNSH(201)+RCSF(201 ),
[ R1(201),R2(201),RC(201),P2N(201) ,PO(201) ,PON(201),
7 PS(201),V2N(201),VS(201)+C01(201)+C02(201),PE(201),
8 PIN(201),P21(201),P22N(201)+P22(201) +PFAC(201),P21N(201)
9 *eVG(201)+VGN(201)4sP33(201)+P3I3N(201)4VGS(201),
1 VO(201),VON(201),XM(201),PITO(201) 4UCNN(201)
0003 COMMON /PEQS/ DS,DN(201)sIMsIEsA1(201),A2(201)4A3(201),+A4(201),
1 XN(202)
0004 COMMON /INSH/ CONO GAM . s , UPSH XNS .
1 EPS o RNAC TPSH vIsSco
000S D IMENSICON P2G(201)
0006 DIMENSION P13N(202) '
0007 DIMENSION PFAM(210)
coo08 D IMENSION C12(210).C11(210)
0009 DIMENSION CNS2P(40),CNS2PP(40)
0010 DIMENSION ViG(210)
0011 O IMENSION v2G(210)
0012 D IMENSION CNS2(110)
0013 DIMENSION VCDI1(201,5)
0014 DIMENSION VCD1(201,5)
0015 DIMENSION YNSH(110) sYNSP(110),YNSPP(11C)
0016 COMMON/PUSHY/ DERIV1 s THMAX
0017 COMMON/OUTSH/ PPS . RRS S ETS . uust vvs .
1 O . PPSE. s RRS1 TT8Y i uus2 vVS1
2 PSP . RRSZ2 TSP . usp * vvs2 o
3 PPS2 RSP . TYSR N uus . vsP
oois COMMON /BASU/ XS3 CONE :
0019 COMMON/KINNI/ XNSH(110)3sXNSP(110)+XNSPP(110)
oo2¢ COMMON/ MANIS/ AXSH{110),AXSP(110),AXSPP({110)
co21 COMMON/MANU/EEL +FF1 4 IEND+IEND1+sAAAL (110)sAAA2(110)4AAA3(110)
1,AAA4(110)
0022 COMMON/CON/  NJNCoNJ1 5 RUMP
0023 COMMON/MAIN2/ CNSWALP,CONP ,AKK] 4ALP3,PHI3,VVM,AKK2,AKK3 ,X1SP
1sPHI,CSF2,RS2+yTKK]1 s TKK2s TKK3 3
0024 COMMON/MN2/ RE1A+RE1IB.RE2ARE2B,RE3A,RE3B.YNPPJ,YNSPJ,YNSHJ, DT,
1  RSH1sT1sJsXNSPJsAMM3(202)4RSH
0025 DATA BLNK /' '/.BNO/'NO*/
C COMPUTER CODE FOR SPHERICALLY BLUNTED CONE USING FULL SHOCK LAYER
€ EQUATIONS (PROGRAMMED BY BsNeSRIVASTAVA)
0026 READ(S,30) OTeTHETAsTHETAL +WW.XFACT
0027 READ( S, 31) JeNJINC,IE, IEND
002a READ(5,32) RMAC+BOsREYIN«TEMP » GAM+SIGM
0029 30 FORMAT(SF1046)
0030 31 FORMAT(4110)
0031 32 FORMAT(6F124+4)
00S2 WRITE(6+33) DTy THETAs THETAL sWW4XFACT s GAMsSIGMsJ s NINC
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FORTRAN IV G LEVEL 21 MAIN DATE = 76296

0033 33 FORMAT(1H1,45X, 10HINPUT DATA./
17F12.6,2110)

0034 DTHET A=3, 5000

003sS NTIME1=0

€036 NJI=NJNC-1

0037 NJ2=NJ1-1

00z8 NJINCI=NJINC+1

0039 THMAX=THETA*3+14159225D0/180,0D0

c040 SMAX=3¢141592653589793200/2,000=THMAX

0041 ANJ1=NJ1

co042 DS=SMAX/(ANJ1-0. 50D0)

0043 RUMP= 1,000

0044 RSH11=0.0D0

0045 THSL=1,0000

D46 THINI==1,0D00

0047 AFULL==14000

004as ALSL=1,000000

00as9 CONVER==1.000

noso 36 CONT INUVE

00S1 THIN=THINI

cos2 35 CONTINUE

0053 TIME=0.000

00s4 NTIME=0

00S5s SWFAC=~1,000D2

cose SSFAC=-1.0000

0057 CALL DERIV(DSs I ENDy» IEND1 s YNSH, YNSP3,YNSPP)

09s8 THMAX=THETA%3,14159225D00/180.,000

cose SMAX=341415926535897932C0/2,0D0~THMAX

0060 ANJI=NJ1

0061 DS=SMAX/{(ANJ1-0450D0)

nos62 NJ2=NJ1~-1

0063 NJNC1 =NJINC+1

cO064 180 4 CONTI NUE

0065 IF(TIME.GT+35.CD0) DT=100.0D0

0066 THMAX=THETA*3,14159225D0/18040D9

0067 SMAX=3,1415926535897932C0/2,0D0~THMAX

0068 DS=SMAX/(ANJ1=04500D0C)

0069 778 CONT I NUE

0070 NTIME 1=NTIME1+1

0071 oo 777 N=1, IEND1

0072 CNS2( N)=YNSH(N)

0073 CNS2P (N)=Y¥YNSP{N)

0074 CNS2PP(N)=YNSPP(N)

007S 77 CONTI NUE

0076 DERIV 1==1,0D0

0077 XNSO=XNSH(1)

o278 NTIME=NTIME+]

0079 IM=IE-1

n080 XN(1)=0.00

oosl DO 15 N=1,IE

ocos2 IF(XN(N)+sLEel10DO) DY=0,035000

e083 IF{XN(N)eLEeD 4649999900 ) DY=0,0150D0

coga

IF(XN(N)sLE«D+04999999D0) DY=0,0010D00
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0085 DN(N)=DY
onas 15 XN(N+1 )=XN{N)+DNI(N)
ooa7 NI TER=0
oosas RSH=0.0D0
oco8s RSH1=RSH1 I
0090 UUS0=0.0
0091 URSH=0.0"
0092 UPSH=0.,000
0093 TPSH=0,000
0094 VISCO=0.0D0
0095 CONO=04+000
‘0096 ASL=1¢2304%(2+ 0~-THSL)/THSL
o097 BSL=1e1750%(2.0-THSL)/THSL
0098 CSL=2+307100%(2,0D0-ALSL)/ALSL
0099 XNS=XNSO
0100 XNSI=XNS
o101 DS2=DS/2.000
c102 CK=1.0D0
103 CSF=04000
0104 SIF=1.000
o1cs RS=0.000
5106 RS2=04 0D0
0107 XB=0e0
o108 COF=040
0109 CDP=0e0
o110 COP1=0e
0111 CDP2=0s.
o112 CDOF1=0.
0113 CDF2=0«
o114 CDPD=0,
0115 COFD=0s
0116 CNS=(XNS1+XNS) /2.
0117 POIP=( (GAM+1,) *RMACXRMAC /2, )**(GAM/(GAM=14))/(GAM*RMAC¥RMAC*
1 (24 *GAM®*RMACXRMAC/ ( GAM+ 1o )= ({GAM=1¢) /(GAM+1, ) ) ** (1o /(GAM-1e)))
0118 TW=B0%(1,000/{ (GAM=1¢0D0)*RMAC*RMAC )+0¢ SODO )
n119 TB=TW%( (GAM=1,000) *RMAC*RMAC*TEMP)
0120 CONP=198¢6/((GAM=1¢ ) *RMAC¥RMAC*TEMP)
c121 VISRA=(1.0+CONP)I*(140/((GAM=-1,4 |*RMAC*RMAC,]**I-5/(|. /{(GAM-!- ) *
1 RMAC*RMAC)+CONP)
o122 EPS = 140 7/ DSQRT(REYINX*VISRA)
o123 CALL SHVALS(1¢0D0+0¢0D04+1s0D0304CD0O+TTSO s VVSOsUUSO,4PPSO41)
0124 TTS=TTSO
0128 DO 100 N=1,I1E
0126 RNSHIN)=CNS/(1¢+CK*¥CNS*XN(N))
0127 RCSF(N)=CNS/(1++CK*CNS*XN(N))
0128 UL (N} =XN(N)
0129 U2(N)=XN(N)
0130 UIN(N)I=1.0
0131 UZ2N(N) =1.,0
0132 UINN{N)=0.0
0133 UCIN)I=XN{N)
0134 CUCN(N) =1 .0
0135 " VI(N)=XN(N)
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0136 V2 (N)=XN(N)

0137 VCIN)=XN(N)

0138 TI(N)=1e0=(140=XN(N))*(1e0-TW/TTSO)

0139 T2(N)=T1(N)

0140 TININ)=140-TW/TTSO

0141 T2NIN)=TIN(N)

f142 TINN(N)=0.0

c143 TCIN)=T1(N)

0144 TCN(N)=TIN(N)

0145 VISCIN)I=(TTS+CONP)*TC(N) **1. S/(TTS*TC(N) +CONP)
0146 RVISCIN)=(TTS*TC(N)+3., 0%CONP ) /(20%TC(N) *(TTSKTC(N)+CONP) ) *TCN(N)
0147 CON{N)=VISC(N)

0148 RCON(N)=RVISCI(N)

0149 P1{N)=1.0

0150 P2(N)=1,0

01851 PC(N)=1.0

0152 PS(N)=040

2183 PO(N)=1e0

0154 PON(N)=0.0

0155 RI(N)=P1{(N)/T1(N)

0156 R2 (N)=R1(N)

1857 RC(N)=R1(N)

c1s8 PFAC(NI)=1.0

0159 PCN(N) =040

0160 PIN(N)=040

0161 100 P2NI(N)=0.0

0162 AA(1)=0.0

0163 BB(1)=0.0

0164 VISCO=(1«0+CONP) *TTS*%]14 S/(TTS+CONP)

0165 CONO=V ISCO/SIGM

0166 DO 5000 I=1,.,IEND

0167 CRNI=1,0D0

0168 IF(IsLT«60) . W=0.8

0169 IF(I.LTe9) W=0.60D00

0170 Yi=l

c171 S=(YI-1.0D0)*%DS

Q172 CALL GEOM(SyDS2+sRS2+CK24CSF24SIF2,XB2)

0173 PHI = DARCOS(CSF2)

0174 PHI2=PHI

017s IF(1,EQel) PHI1= 3.1415926535897932D9/2.0D0
0176 PHIS2=(PHI2~-PHI1 ) /DS*2,0D0

0177 IF(1eEQel) PHIS=PHIS2

0178 IF(CONE«LT«0.0D0) PHIS2=~1, 0D0

0179 IF(CONE«LT+0.0D0) PHIS==1.00D0

0180 IF(CONE+GTe0.,0D0) PHIS2=0,000

0181 IF(CONE.GT«0.0DQ) PHIS=0.000

o182 DXDS1 =( AXSP(I }#+AXSP(I+1))/2.000

0183 X1SP=XNSP(I)

0184 XNSPM=( XNSP(1)#+XNSP(I+1))/2.000

0185 ALP=DATAN({YNSP(I)+YNSP(I+1))/(2.0D0%DXDS1))
o186 IF{RUMP+LTe0.0D0) GO TO 305

o187 IF(1eEQeNJ1)XNSPM=(3,0DO*XNSP(NJ1)~-XNSP(NJ2))/2.000
o188 IF{1eEQeNJ1) AXSPJI=(3+0D0%AXSP(NJ1)=AXSP(NJ2))/2.0D0
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0189
0190
0191
o192
0193
0194
0195
0196
0197
0198
0199
0200
0201

ca202
0203
0204
0205
c206
0207
o208
0209
o210
o211
o212

6213
0214

0215
0216
0217

0218
0219

0220
n221
0222
c223

0224
0228

0226
o227

305

2001

Chkkx

302
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IF(1eEQeNJL) YNPPJI=(3.000%YNSPP(NJ1)=YNSPP(NJ2))/2.0D0
IF(Ie«EQeNJ1) YNSHJI=( 3.000*YNSH(NJ1)=YNSH(NJ2))/2.,0D0
IF(I«EQeNJ1) XNSHJ=( 3+ 0DO* XNSH(NJ1)=XNSH(NJ2))72.000
IF(1+EQeNJ1) YNSPJI=(3.0D0%YNSP(NJL1)=VYNSP(NJ2))/2. 0DO
IF(1«EQsNJL) ALP=DATAN(YNSPJ/AXSPJ)

CONTINVE
1IF(l.EQel) ALP=(22.0C0/14,0D0+DATAN(YNSP(I+1)/AXSP(1#1)))/2.0

SP = DSINIALP)

CP = DCOS(ALP)

SPB=SP*SI[F2+CP*CSF2

CPB=CP*SIF2-SP*CSF2

CONTINUE

CALL SHVALS ( SP, CP, SPB., CPBys TTSHs VRSHs URSHs, PPSH," 2)
Rk Rk Rk kR kR R kR Rk k kR ko Rk ko kk X

IF(1+EQel) ALP3= 3.141592653585793200/2.000

IF(1+EQel) PHI3= 3.141592653589793200/2.000

BLP=ALP3

PHP=PHI 3

AK=TTS/PPS

AR=2, OD0O*GAM*RMAC*RMAC*DSIN(BLP ) **2,000-(GAM=1,0D0)

AR1=2¢ 0DO*GAM*GAMXRMAC®RMAC*DSIN(2.000%BLP)/(AR¥( GAM+1.000)**1.0
100)

AR2=4, ODO*GAM#¥DCOS(BLP)/ ((GAM+1.0D0) *RMAC**2,0D0#AR*DSIN(BLP)**
13.000)

AR3=4 4ODO*GAM* %3, 0DO*¥RMAC** 4. 0DO*DSIN(2,0D0*BLP)*DSIN(BLP) ¥%2,000
1/( AR**2, 0D0O*(GAM+1+0D0 ) %*1.,00D0)

AR4=24 ODOXGAM*XRMAC¥%2, OCO*DSIN(2.,000*BLP)/(AR*AR) * (GAM*(GAM+1.0D0
1)/ (GAM=1,0D0)~2+000%GAM* (GAM=1,0D0)/(GAM+1,000))

ARS=4, ODO*GAM¥GAM®DSIN( 2,000 *BLP )/ ((GAM+ 1.0D0) *AR* AR*DSIN(BLP) *%*2,
10D0)

ARR]1=AR1+AR2~AR3~-AR4&4+ARS
AKK1=~DSIN{2+0D0*BLP~PHP)*(140D0~(GAM=1:0D0)*AK/GAM)
14DSIN{BLP)*DSIN(BLP=PHP) *(GAM=1,0D0) /GAM¥ARR1
AK11=¢+DCCS(2.0D0 *¥BLP-PHP ) #{1 «0D0~(GAM=1,0D0) *AK/GAM)
1=-DSIN(BLP)*DCOS({BLP=PHP ) *(GAM=1,000) /GAM*ARR1
AKK2=DCOS(BLP)*DSIN(BLP=PHP)=(GAM=1+0D0) /GAM*AK*DS IN(BLP)*DCOS(BLP
1-PHP)

AKKK2=-DCOS(3LP)*DCOS{ BLP=PHP )= (GAM=1.0C0)/CAM*AK*DSIN(BLF)*DSIN
1(BLP=-PHP)

AK6=2 4 ODO*GAM/ ({(GAM+1+000) *%2,000)*DSIN(2,000%BLP )

AK7=4 ¢0DO*DCOS(BLP ) /((GAM+1,000 ) *%2,0D0*RMAC*%4,0DC*DSIN(BLP)¥%3,
10D0)

AKK6=AK6+AKT
AKK3=2,0D0/(GAM+1.0D0 )*DSIN(2.000%BLP)
IF(Ie EQel) GO TO N2

DALDS=(DCOS({ALP3=PHI3 ) %%2,000/((1.000+CK*CNS)*DCOS(PHI3)))
1%{ YNSPP(I)=((RSH=YNSH(T) )/DT)*2,000)=YNSP{1)*CK*DSIN(ALP3%*2,000
2=2.0D0%PHI3)/((1+0D0O+CK*CNS) *DCOS(PHI3))
CONTINUVE
IF(1.EQel) DALDS=((XNSPP(1)=((CNS=XNSH(1))/DT)*2,0D0)/(1.0D0+
1CNS)=1,000)
USP=AKK1*DALDS +AKK2*PHI S
VSP=AK]1 1*DALDS +AKKK2*PHIS

147



AEDC-TR-77-20

FORTRAN IV G LEVEL

0228
0229
0230
0231
0232
€233
c23a
0235
0236
0237
0238
0239

0240
0241
0242
0243

0244
€245

c246
0247
0248

0249

02s0
0251

0282
0253

c2ss
025S
c256
0257
02ss
0259
0260

c261
0262

37

306

21 MATIN DATE = 76296 0S/703/31

PSP=AKK3*DALDS

TSP=AKK&6%DALDS

RSP=( GAM/ ({GAM=1,0D0 ) )*( PSPX*TTS~TSP*PPS) /(TTS*TTS)

IF(I+EQel) PSP=040D0

IF(I1<EQel) TSP=0.0D9

IF(I+EQel) VSP=0.,0D0
CONT INVUE

TLP=ALP

THP=PHI

TK=TT S2/PPS2

TR=2+ ODO*GAMXRMAC*RMACK*DSIN(TLP )* DSIN( TLP)—=(GAM—=1,0D0)

TR1=2+0D0*GAM*GAM*RMAC ¥RMAC*DSIN(24 ODOX TLP ) /(TR*{ GAM#+140D0 ) %% 10 0
1D0)

TR2=44 0DO*GAM*DCOSC{ TLP )/ ((GAM+1.0D0) XRMAC* %2 ,0DC*TR*DSIN(TLP ) *
IDSIN(TLP)XDSIN(TLP))

TR3=4.0DD*GAM*'3.0DO*hMAC**Q.ODO*DSIN(Z.ODO*TLPI*DSIN(TLP)**Z-ODO
1/(TREX 2, 0DO*{ GAM+1e0D0) *%1,000)

TR4=2.0DO*GAM*RMAC#*2.0CO*DSIN(Z.ODO*TLP)/(TR*tR)*(GAM*(GAM#!.ODO
1)/ (GAM=140D0)~2+000%GAM* (GAM=~1,0D0) /(GAM+1,0D0))

TR5=4, ODO*GAM¥GAM¥DSIN( 2.0D0*TLP ) /( (GAM+ 1. 0DO ) ¥ TR*TR*DSIN( TLP) *%24
100¢C)
TRR1=TR14TR2=TR3=TR4+TRS
TKK1==DSIN(2s0DO*TLP-THP 1 ¥(1+0D0~{GAM=140D0) *TK/GAM)
1+DSINC TLP) *DSIN( TLP=THP ) *(GAM=1, CD0 ) /GAM*TRR1
TK11=+DCOS(2+0D0O*TLP=THP )*(1+0D0~(GAM=1,0D0)*TK/GAM)
1-DSINC(TLP) *DCOS(TLP=THP )} *(GAM=-1.0D0 ) /GAM*TRR1
TKK2=DCDS(TLP)‘DSIN(TLP-THP)-(GAM-lQODO)/GAM*TK*DSIN(TLP)*DCDS(TLP
1=THP)
TKKK2=~DCOS(TLP)*DCOS{TLP=THP )~ (GAM=1+000 )/ GAM*TK*DSIN(TLP )*DSIN
L(TLP=THP)
DALDS 1=(DCOS(TLP=THP)*%*2,0D0/(( 1s0D0+CK2%XNS) *DCOS{ THP)) )
l*((YNSPP(I)+YNSPP(1+l)l/2-0005((RSH1-((VNSH(!)+YNSH‘I+I|)/2.ODG])
2/DT)*240D0 ) =CK2*DSIN(TLP*2,0D0~THP*220D0 ) /((1+00C+CK2*XNS) *
2DCOS(THP)) *((YNSP( I )4YNSP(1+1))/2.000)
IF(RUMPLTs0,0D0) GO TO 306
IF(Ie« EQeNJL)
1 DALDS1=(DCDS(TLP‘THP)“2cODOI((l.ODO#CK‘XNS)*OCDS(THP)))
2%(YNPP Y ~{(RSH1=YNSHJ)
3/DT)*2 2000 )=CK2*DSIN(TLP¥2,0D0~THP*2,000)/(( 14 ODO+CK2%kXNS ) *
4DCOS(THP) ) *YNSPJ

CONT INUE

VSP1=TK11*DALDS1+TKKK2%PHIS2

Coak ke ok ok ok oKk K K KKK R R R ok ke Rk ok Rk ok o kR kok

IF(I.EQel) VVM=VVS
IF(IaGTel) VVM=1 4000
VISCO=(1.04CONP)*TTS**x1,5/(TTS+CONP)
CONO=V ISCO/SIGM
REFAC=RRS*VVM*CNS/(EPS*EPS*V ISCO)
VIS2=({ TTS24CONP ) %T2(1)**1,5/(TTS2%T2(1)+CONP)
XKSL = VIS2*RRS*VVM*DSQRT((GAM-14.0D0)%XTTS2*T2(1)/GAM)/
1 (PPS2%P2(1 )*REFAC)
DO 200 N=1,IE
CPST(N)=1.0
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n263 IF (SeGE«0.0301) GO TO 160
0264 PFACIN)=4,0D0* (P2(N)+(PPS2/PPS0~2,0D0)*PO(N) )/ (UUS2%DS)
1 =XNSP(2)*XN(N)*PON(N)/(240D0*%UUS2%CNS)
0265 GO TO 200
c266 160 CONTI NUE
0267 200 CONTINUE
c SOLVE ENERGY EQUATION
0268 DO S00 N=1,.1E
0269 Al (N)=REFAC*VISCO*CPST(N)*(UUS*XNSP( I )*RNSH(N)*RC{N) *UC(N) *XN(N)
1 Z{VVM*CNS) =RCIN)*VC(N) )/ (COND*CONIN) ) +RCON (N ) +CK *RNSH(N)
2 +RCSF(N)
0270 A4 (N)==REFAC*VISCO*CPST(N)*UUS*RNSH(N) *RCI(N) *UC(N) /(VVM*CONO*
1 CON(N))
0271 A2(N)=AA(N)XTSP/TTS
c27a 500 A3(N)=REFAC*PPS*VISCO*(RNSH(N) *UUS*UUS*UCIN) *PFAC(N)+VVM*VC(N) =
1 PCN(N) ) Z/( TTS*RRS*VVMxCONO*CON{ N) )+ UUS*¥UUSAVISCIN) *VISCO*
2 (UCN(N)=CKXRNSH(N) *UC(N) ) **2 /(TTS*CONO*CON(N))
0273 GAMP=G AM+1 . 000
0274 GAMM=GAM=1,0D0
0275 RMACQ=RMAC*RMAC
ca276 EP SQ=EPS*EPS
0277 SPQ=SP ¥SP
c278 FOGQ=4 «000/ (GAMP*GAMP)
0279 NEN=RMACQ*RMACQ*SPQ
0280 CS1=SP%*XNS/(EPSQ*CONO)
o281 CS2==( (URSH=CP ) ¥*2 +FOGQ* GAM*SPQ+ (2,0 D0 /GAMM~-FOGQ*GAMM) /RMACQ
; 1 ~FOGQ/DEN)*0, 5D00%SP*XNS/( EPSQ*CONO*TTS2)
0282 IF (SWFAC) 501,501,502
0283 502 CBl1=~14/(CSL*XKSL)
c284 CB2=TW/( TTS2*CSL*XKSL)
028s CALL BOUND(TINN+TIN.T1,CE1.CB2,E1,F1,CRNI)
c286 GO TO S03
n287 501 E1=0.0
o288 F1=TWw/TTS2
0289 503 CALL PEQSO(TINN,TINGT1sT2NNs T2N,T2,E1,F1 sCPNI ,CS1,CS2,SSFAC+1+0,1)
0290 TTS26=TTs2
0291 IF (SSFAC) 521,521,522
0292 522 TPSH=T2N(IE)
0293 TTS2=T2(IE)*TTS2G
0294 IF (S«+GE+0+0001) GO TO S2§
02%5 TTS1=TTs2
0296 525 TTS=(TTS2+TTS1)/72.0
0297 DO 524 N=1,1E
0298 T2NN(N)=T2NN(N) *TTS2G/TTS2
0299 T2N(N)=T2N(N)*TTS2G/TTS2
0300 §24 T2(N)=T2(N)*TTS2G6/TTS2
0301 VISCO=(1.04CONP ) *TTS*%1, S/(TTS+CONP)
p302 CONO=VISCO/SIGM
0303 REFAC=RRS*VVM*XCNS/(EPS*EPS*VISCO)
0304 GO TO 523
030S 521 TPSH=0.
c SOLVE S MOMENTUM EQUATION
0306 523 Xu2s5=u2(15)
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0307 Xuzs=uz2(J)

0308 VI S2=({ TTS2+CONP)*T2(1)**1,5/(TTS2%xT2(1)+CONP)

0309 XKSL = VIS2*RRS*VVM*DSQRT((GAM=1+0D0)*%TTS2*T2(1)/GAM)/
1 : (PPS2%*P2(1 )*REFAC)

0310 DO 540 N=1,1E

0311 R2(N)=P2(N)/T2(N)

0312 IF (SeGEe«040001) GO TO 541

0313 R1(N)=R2(N)

0314 TL(N)=T2(N)

0315 TIN(N)=T2N(N)

0316 TINN(N)=T2NN(N)

0317 541 CONTINUE

0318 TCIN)=(TI(N)+T2(N) ) /24

0319 TCN(N)=(TININ)+T2N(N)) /2.

0320 VISC{N)=(TTS+CONP)*TC(N) **1.5/(TTS*TC(N)+CONP)

0321 RVISCIN)=( TTS®*TC(N)+3.C*CONP )/(2+0*TC(N) *( TTS*TC(N)+CONP) ) *TCN(N)

0322 CON(N)=VISC(N)

0323 RCON(N)=RVISC(N)

0324 540 RC(N)=PC(N)/TC(N)

0325 DO 600 N=14IE

0326 Al (N)=REFAC* (UUS*XNSP( I)*RNSH(N) *RC(N)*UC(N)*XN(N)/Z(VVM*CNS)
1 =RCIN)*VC(N) ) /VISC(N)#RVISC(N)+CK* RNSH (N} +RCSF (N)

0327 A2 (N)=-REFAC*(USP*RNSH(N)*RCIN) *UCIN)/VVM+CK*RNSH(N) *RC(N)
1 *¥VCIN) ) /VISC(N)=CK¥RNSHIN) ¥RVISC(N)={CK*¥RNSH(N)+
2 RCSF (N) ) *CK*RNSH(N )

0328 A3 (N)=—REFAC*PPS*RNSH(N) *PFAC(N) Z/(VISC(N ) *RRS*VVM)

0329 600 A4 (N)==REFAC¥UUS¥RNSH(N)*RC(N)*UCIN) /(VISC(N)*xVVM)

0330 CS1=SP #SPB*UUS2*XNS/(EPS*EPS*V [SCO*URSH)
1 ~CK2%XNS/(1 e +CK2%XNS)

0331 CS2=~SP*XNS*(CP+VVS2*CPB)/(EPS*EPS*VISCO*URSH)

0332 IF (SWFAC) 601.601,602

c333 602 CB1==14+/(ASLEXKSL)~CK2%XNS

c33a CB2=0,

0335 CALL BOUND(UINNsUINsU1 sCEB1 4CB2+E1+F1+sCRNT)

0336 GO TO 603

0337 601 E1=040

0338 F1=0.0

0339 603 CALL PEQSO(UINN,UIN Ul JU2NNyU2NsU2+E14F1 yCRNI4CS14CS2+,SSFACsle ol )

0340 uUuUS2G=UUS2

0341 IF (SSFAC) 621,621,622

0342 622 UPSH=U2N(IE)=CK2*XNS*U2(IE)/(1++CK2%XNS)

0343 UUS2=U2( IE ) *UUS2G

034a IF (S«GE.0.,0001) GO TO 625

0345 UuUS1=-Uus2

0346 625 UUS=(UUS2+UUS1)/240

0347 DO 624 N=14I1E

0348 U2NN(N)=U2NN(N) *UUS2G/UUS2

0349 UZ2N(N) =U2N(N)*UUS2G/UUS2

0350 624 U2(N)=U2(N)*UUS2G/UUS2

0351 GO TO 623

352 621 UPSH=0.

c SOLVE MASS CONSERVATION EQUATION
0353 623 CONTINUE
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DO 640 N=1,1E
IF (SeGE+0.0001) GO TO 641
U1 (N)=U2(N)
UL NU{N) =U2N(N)
UINN{N)=U2NNIN)
641 UCIN)=CULINI+U2(N)) /20
UCNNC N) =(UILNNIN)+UZ2NN(N) ) /2,000
640 UCNIN)=(ULN(N)+UZSNI(N)) /2.
DD 6058 N=1,1E
P2G(N)=P2(N)
V1G(N)=VC(N)
V2G(N)=V2(N)
6055 CONTINUE
XV10=P2(J)
XV50=T2(J)
DO 700 N=2,IE
AA (N)=AA(N=-1)+DN(N-1)%(R2(N=1) ¥U2{N=1)+R2(N)*U2{N) ) /2.
700 BB(N)=BB(N=1)+DN(N=1)*(R2({N-1)*U2(N=1)*XN({N=1)
1 +R2(N)*U2(N) ¥ XNCN) ) /20
IF (S¢GE4040001) GO TO 705
Al A=8, *BB(IE)*RRS2*%UUS2*CSF2/D5~DS
BIB=4,*AA(IE)*RRS2%UUS2*RS2/DS-DS
CIc=-DS
ROT=BIB*BIB-AlA*CIC
XNS = (=BIB + DSQRT(ROT)) /7 AIA
X1R=XNS
DO 701 N=1,I1E
XNR=XNS
C12(N)=C02.(N)
CO2(N) =XNR* (RS2*AA (N) +XNR*CSF2*BB(N) ) *RRS2%UUS 2
VC (N ) =84 *XNS*k( AA (N) ¥RS2+ XNS*BB (N) ¥CSF2)*RRS2*UUS2/ (DS*DS*( 1.+
1 XNS¥XN(N) ) #%2 *RC(N))
V2(N) =VCIN)
701 CONTINUE
GO TO 711
705 AIA=BB(I1E)*CSF2%RRS2%UUS2
BlB’AA(lE)‘RSZ#RRSZ‘UUSZ/2(
CIC=-COL ({1E)+(RS+CNS*CSF ) #(( 1o +CK*¥CNS ) ¥RRS*¥VVS=XNSP (I ) ¥RRS*UUS ) *DS
ROT=BIB*BIB-ATA%CIC
XNS = (=BIB + DSORT(ROT)) / AIA
CICI==C11(IE)+(RS2+X1R*CSF2) *( (1 +4CK2%X1R) ¥RRS2*VV S2-XNSPM*RRS2
1%UUS2) *DS
ROT1=BIB*BIB-AIAXCIC]
XN1S=(~BIB+DSQRT(ROT1)) ZAIA
DO 710 N=1,1E
XNR=XNS
CO2(N) =XNR*(RS2%AA (N) + XNR*CSF2+#BB{N) ) *RRS2¥UUS2
VI=(CO2(N)-CO1(N))/DS
VC (N} ==V I/(RRSXVVMERC(N) #(1¢ +CK¥CNS*XN(N) ) * (RS+CNS¥XN(N)*CSF))+
1 XNSPUT)*¥XNIN)®UUSHUCIN)Z(VVM* (1, +CKECNS*XNI(N)))
X1R=XN1§
C12(N) =X1R®*(RS2*AA(N)+X1 R¥CSF2%BB(N) ) *RRS2*UUS2
VM=(C12(N)=CL11(N))/DS

151



AEDC-TR-77-20

FORTRAN IV G LEVEL 21 MAIN DATE = 76296 05/03/31

0403 V2(N)==VM/ (RRS2*VVMkR2(N)*( 1+ +CK2XX1R*XN(N) ) ¥ (RS2+XLIR*XN(N)*CSF2}
2) 4 XNSPMEXNIN) ®UUS2*xU2 (N} /(VVM* (1 e +CK2%XX1R*XN(N) ) )

oaca 145 CONTINUE

0a0s 710 CONTINUE

0406 711 IF (SeGE+040001) GO TO 715

0407 XNS1=XNS

oang 715 CNS=(XNS1+XNS)/2,,

0409 RSH1=RS2+XNS*CSF2

0410 IF(1.EQal) RSH1I=RSH1

calt XSH=XB-CNS*SIF

0a12 RSH=RS+CNS*CSF

0413 IF{THINSGT+0+0D0) GO -T0. 9116

oala 6020 CONTINVE

0415 Do 9117 N=1,1IM

0416 VCIN)=(WXVIG(N)+(1e=W)*VC(N))

0417 V2(N)=(WxV2G(N)+(1+=-W)*V2(N))

oca1s 9117 CONTINUE

0419 9116  CONTINUE

0420 IF (THINJGEZ0.0) GO TO 716

ca21 VVS2G=VVS

0422 VVS2G=VVS2

0423 VPG=VSP1

0424 716 CONTINUE

0425 DO 712 N=1,IE

0426 RNSH{N)=CNS/(1++CKXCNSXXN(N) )

0427 IF (S«GE+0.0001) GO TO 713

0428 V1 {N)=VC(N)

ca29 RCSF{N}=CNS/(1e +CK*CNSXXN(N) )

0430 GO TO 714

0431 713 RCSF(N)=CSF*CNS/ (RS+CNS*XN(N)*CSF)

0432 714  CONTINUE

0433 VS(N)=(Vv2(N)=V1(N))/DS

0434 IF (THINJGE.0.0) GO TO 717

0435 VG(N)=V2(N)

0436 VGS(N)=VS (N)

ca37 [F{NT IME«EQe 1) GO TO0 718

ca3s IF(leLEe2) VGS(N)=(VCDI(N,I141)-VCDI(N,I))/DS

0439 [IF(I.EQel) VGSU(N)=(VCD1 (N, I1+1)=VCDL1(N+1))/DS

0440 718 CONT INUE

08al IF(L.EQel) VO(N)=VC(N)

0442 717 CONTINUE

0aa3 712 CONT INUE

0444 DO 720 N=2,IM

0445 IF (THIN.GE+0+0) GO TO 720

0446 VON(N)={DN(N=1)*VO(N+1)/DN(N)=DN(N)*VO(N=1)/DN{N=1))/(DN(N)+
1 DN(N=1) )+ (DN({N)=DN(N=1) ) *VO(N)/(DON{N) *DN(N=1))

0aaz VGNIN)=(DN(N=1}*VG(N+1) /DN(N)=DN(N)*VG(N=1)/DNIN=1))/(DNCN)+
1 DN{N=1))+(DNIN)=DN(N=1) )% VG{N)/(DN{N)*DN(N=1))

oass 720 V2N(N)=(DN(N=1)*V2(N+1)/ON(N)=DN{N)*V2(N=1)/DNCN=1))/(DN(N)+
1 DN({N=1))+(DN{N)=DN(N=1) )%k V2(N)/(DN(N)*DN(N=1))

0449 IF (THIN«GE+0.0) GO TO 725

osse VONCIE)=VO(IE)* (DN{IM=1)+2,%DN(IM))/(ON({ IM)*(DN(IM)+DN(IM=1)))
1 ~VO(IE=1)%(DN{ IM=1)4DN(IM))/(ON(IM)*DN(IM=1))
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2 +VO(IE=2)*DN(IM)/(DN( IM=1)*(DN(IM)+DN(TM=1)))
0451 VGNIIE)=VG(IE)*(DN(IM=1)42«*DN(IM) )/ (DN( IM) %(DNCIM)+DN(IM=1)))
1 ~VG(IE=1)*(DN{ IM=1)4DN(IM))/(DNCIM)*DN(IM=1))
2 +VG(IE=2)*DNCIM)/ (DN{ IM=1)* (DNCIMI4DN(IM=1)))
0452 VON(1)==VO(1)*(DN(2)+2.%CN(1))/(DN(T)*®(DN(1)+DN(2)))
1 +V0(2)*(DN(2)+DN(1))/(DN(1)*DN(2))
2 ~VO(3)*DN(1)/(DNC2)*%(DNC1)4DN(2)) ),
0453 VGN(1}1==VG(1)*(DN(2)+2.*DN(1))}/(DNC1)*(DN(1)+DN(2)))
1 +VG(2) % (DN(2)4DN( 1) )/(DN(1)*DN(2) )
2 ~VG{3)*DN(1)/(DN(2)*(DN(1)+DN(2)))
0454 725 CONTINUE
455 V2NCIE )=V2(IE)*(DN(IM=1)+2.%DNC(IM) ) /(ON( IM)*(DNC IM)+DN(IM=1)))
1 =V2(IE=1 )% (DN({IM=1 )4DNC(IM) )/ (DNCIM)XDN(IM=1))
2 +V2(IE=2)%DN{ TM) Z/(DN( IM=1 )% (DNCIM)+DN(IM=1)))
0456 V2N(1 )==V2(1 )*(DN(2)+2,%CN(1))/(DNC1)*(DN(1)4DNC2)))
1 +V2(2) % (DN(2)+DN(1))/7(DN(1)*DN(2))
2 =V2(3)%DN(1)/({DON{2)*(DN(1)+DN(2)))
SOLVE N MOMENTUM EQUATION
0457 P2IN(IE) =RRS2*UUS2#%%2 *CK2*¥XNS/(PPS2% (1+ 4CK2%XNS))
cass P21(IE)=140
0459 P2N( IE)=P21N{IE)
0460 P2(IE)=1,
0461 RC(IE) =140
cas62 IF (THIN«GE«Ds0) GO YO 750
0463 IF(1.EQel)
1P3I3N(IE)=~RRS2*VVS2G*VVS2G*( (1 «~UUS2*XNSPM/(VVS2G* (1« +CK2*XNS) ) ) *
1 VGN(IE) +UUS2*XNS*VPG/VVS2G/(VVS2G* (1. +CK2%XNS)) )/PPS2
0464 IF{T14GT 1)
1P33N(IE) =—RRS2*%{ (VVS2G-UUS2*XNSPM/ (1. 0D0+CK2*XNS) ) *VGN( IE)
24UUS2% XNS/ (1. 0DO+CK2%xXNS)*VGS( IE) ) /PPS2
0465 P33(1E)=0.0
0466 P2N(IE)=P2N(IZ )+PI3N(IE)
0467 750 CONTINUE
0468 PCCIE)=1.
0469 PCN(IE)=(PIN(IE) #+P2N(IE) ) /24
0470 IF (S«LE«0s0001) GO TO 755
0471 PFAC(IE) =(=XNSP(I)*PCN(IE)/CNS+PSP/PPS)/UUS
0a72 755 CONTINUE
0473 PE(IE)=1.,
0474 PS(IE)=0.
047s R2(IE) =1,
0476 IF (S«GE+0.0001) GO TO 800
0477 CALL SHVALS(1:0D0404000+1+s0004040D05TTSO +VVSO,UUSO+PPSOs1)
0a78 PON( 1E )=040
0479 IF (THINGE«+O0+0) GO TO 760
PONCIE )=VVSG(1)*VON(IE)/PPSO
0480 PON(IE )= VVS *VON(IE)/PPSO
0481 760 CONTINUE
0482 PO(IE)=140
0483 PL1(IE)=1,
casa PIN(IE)=P2N(1E)
0485 RI(IE)=1,
cass VI(IE)=1.
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0487 800 KON=IM

[%-:] DO 810 N=1,IM

0489 P2IN(KON)=RRS2%UUS2*%*%2 *CK2*XNS*R2(KON)*U2(KON)*%2 /(PPS2% (1,+CK2%
1 XNS®¥XN(KON)) )

0490 P21(KON)=P21 (KON+1 )=DN{KCON)}* (P21N(KON+1) +P21 N{KON) ) /2.

0491 P2N(KON)=P21 N(KON)

0492 P22({KON)=04,000

0493 P2 (KON )=P21 (XON)

cags IF (THIN'GE+0«.0) GO TO 80S

0495 IF(I+EQel)
1P3 3N(KON)=-~RRS2%VVS2G*VVS2G* ((R2(KON) *VG (KON )=R2{KON) *U2(KON) *UUS2
1 *XNSPM&XN(KON) Z/(VVS2G*( 1, +CK2*xXNS*XN(KON) ) ) ) *VGN(KON)
2 +UUS2%*XNS*R2(KON)*U2( KON} *( VGS( KON} +VPG*VG(KON) /VVS2G)
3 Z(VVS2G*(1e+CK2¥XNS*XN{KON))))/PPS2

0496 IF(I.GTel)
1P33N(KON)=~RRS2 *((R2(KON)*VG (KON )=-R2(KON) *U2( KON)*UUS2
1 *¥XNSPMXXN(KON) /(1.0D0% (1 ++CK2%XNSKkXN(KON) ) ) )*VGN( KON)
2 +UUS2*XNS*R2(KON)*U2( KON) *{ VGS{ KON) )
3 /(1e0D0*(14+CK2*XNS*XN(KON))))/PPS2

0497 P33(KON)=P33(KON+1)=DN(KON}* (P33N(KON+1)+P33N(KON) ) /2,

0498 P2N(KON)}=P2N(KON)+P33N(KON)

0499 P2 (KON)=P2 (KON) +P33 (KON)

0500 IF(THINJGT«0.,0D0) GO TO- 9222

0501 P2(KON)=(W*P2G({KON)+(1s =W)*P2(KON)}

0502 9222 CONTINUE

0503 B80S CONTINUE

0s0a R2 (KON )=P2 (KON ) /T2 (KON)

0505 IF (S«GE+0.0001) GO TO 801

0506 PON(KON)=040

cs507 IF (THIN«GEe«0Oe«0O) GO TO. 807

0508 PON(KON)= VVS *P0 (KON) *VO({ KON) *VON({KON) /{PPSO*T2 (KON) )

0509 807 CONTINUE

0510 PO(KON)=PO(KON+1)~DN{KON)*(PON{KON+1) +PON{(KON))/2,

0511 P1 (KON )=P2(KON)

0512 P1 K(KON)=P2N(KON)

0513 R1 (KON )=R2(KON)

0514 V1 (KON )=V2(KON)

0515 801 PE(KON)=P21(KON)+P22(KON)

0516 PC(KON)=(P1{KON)+P2(KON) ) /2.

0S17 RC (KON )=PC(KON)/TC(KON)

0s18 PCN(KONI=(PIN(KON) +P2N(KCON) ) /24

€519 PS (KON )=(P2(KON)=P1 (KON) ) /DS

0520 IF (SeLE«04D001) GO TO 810

cs21 PFAC(KON)=(PS(KON)=XNSP{ I)*XN(KON)*PCN(KON)/CNS+PSP*PCIKON)/PPS)/
1 uus

0522 810 KON=KON-1

0523 NI TER=NITER+1

0524 IF(NITER«GTa300) Go TO 6000

0528 TFACT 1=XV10~-P2(J)

0526 TFACT 2=XV50=-T2(J)

0527 TFACT=XU25-U2(J)

0528 IF(DABS(TFACT )=XFACT) 822,821,821

0529 821 GO TO 2000

”
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0530 822 CONTINUE

0521 1F(DABS(TFACT1)=XFACT) 824,821,821

0532 9777 CONTINUE

0533 824 CONT INUE

0534 IF(CABS(TFACT2)-XFACT) 820,821,821

0535 820 IF(CONVER.GT,.0.000) GO T0 823

0536 CCNVER=1.0CO

0537 GO T0 2000

n538 823 CONTINMUE

0539 IF (S.GE.N.0NO01) GO TO 830

0540 TST=(1l.+#TW/TTS0) /2.0

0541 VIS4=(TTSO+CONP) #TST*x]1 ,5/(TTSO*TST+CONP)

0542 VIS3=VISCO*VIS4

0543 REY=1.0/(EPS*EPS*VISCO)

0544 XKXK=(GAM=1.)/(GAM+1 ) *(TTSO/TW+1.)*B0O/(2.%EPS*EPS*VIS§3)

0545 IF{AFULL.GT.0.900) G0 TO 202

0546 GO TO 222

2547 292 CONTINUE

0548 CNT=BLNK

0545 CuWS=BLNK

0550 CSS=BLNK

0551 IF(THIN <EC. =1.) CNT=BNO

0552 IF(SWFAC.EQ. =le) CWS=BNO

0553 IF(SSFAC.EQ. -1.) CSS=BNO

0554 WRITE (6,922) CNT, CWS, CSS, 1E, 1END, DS

0555 922 FORMAT(1HO,3XA2,17H THIN SHOCK LAYE®,3X,42,10H WALL SLIP,3X,A2,
111H SHOCK SLIP,5X,15HNO STEPS IN N =,14,
216H NO STEPS IN S =414,5H LS =4F5.3)

0556 WRITE (6,924) RMAC, BO, EPS, REYIN, REY

0557 924 FORMAT (LHO,5X4HMINF, 7X5HTH/T0|7X3HEPSp7X8HREY(INF'|6X6HREY(S)/
13F12.442513.3)

0558 222 CONTINUE

0559 830 REFAC=RRS*VVM*CNS/(EPS*EPS*VISCO)

0560 CFCH=2.*UUS*RRS*VYM*VISC (1) *{UCN(1)~-CK*CNS*UC(1))/REFAC

0561 HEAT= TTS*PRS*VVM*(CONO*CCN(L)*TCN(1)/VISCO+UUS*UUS*VISTI(1)*UC(1)
1 *UCN(1)/TTS)/REFAC

0562 STAN=HEAT/(0.5+1:9/((GAM=1.0) *RMACXRMAC)~TH)

0563 XNSP(I)=(XNS=XNS1)/0S

0564 0O 840 N=1,I1E

0565 XM (N)=DSQRT({ (UUS*UUS*UC (N)*UC (N) + VVMRYVMXVC (N)*VC (NI )/
1 ((GAM=1.)*TTS*TC(N)))

0566 PO2PD1=1.0

0567 IF (XMIN).LE.1.0) GO TO 845

0568 PO2POL=( (GAM+1 O)*XM(N)*XM(N) /(2. +{CAM=1. ) EXM(NIXXM(N) ) ) **
1 (GAM/(GAM=14)) /(2. *¥GAMXXM(N)*.XM(N)/ (GAM+1.)—=(GAM=1.)/(GAM
2 +1.))**(1./(GAM-1.))

056% 845 PITO(N)=PO2POL*PCIN)*PPS*(1.+(GAM=1.)*XM(N)*XM(N)/2.)**(GAM/
1 (GAM=1.))/POIP

0570 IF(1.EQ.1) VCI(N)=VC(N)*VVS

0571 IF(I.EQ.1) V2(N)=VC(N)

0572 IF(1.LELS) VCDI(NyI)=VC(N)

0573 IF(I1.EQ.1) VCDL(N,I)=VCIN)/VVS

0574 IF(1.€Q.2) VCOLIN,1)=VCIN)/VVS
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0575 Ul (N)=U2(N)

cs76 V1 (N)=V2(N)

0577 TL(N)=T2(N)

cs78 R1 (N)=R2(N)

0579 PLIN)=P2(N)

05890 TININ)=T2N(N)

0s81 TINN(NI=T2NN(N)

0582 ULIN(N)=U2N(N)

cs8e3 UL NN{N )=U2NN(N)

cs58s ClI(N)=Cl12(N)

¢s8es 840 CO1(N)=CO2(N}

0586 PWALL=PPS*PC(1)

c587 IF (SWFAC) 843,843,844

0588 844 PWALL=PWALL-BSL*EPS*%*2*DSQRT((GAM=1+0D0) /(GAMX*TTS*TC(1)))*VISCO

1 *¥VISC(1)*TTS*TCN(1 )/CNS

0589 843 CONTINUE

0590 IF (SeLEe«0,0001) GO TO 841

0591 COP2=4+%RS*SIF*PWALL

0592 CDF2=2 s ¥RS*CSF*CFCH

0593 COPD=CDPD+(CDP1+CDP2)%DS /2,

0594 COFD=CDFD+(CDF1+CDF2}*DS/2,

0595 COP=CDPD/(RS*RS)

0596 CDF=CDFD/(RS*RS)

0597 841 IF (S«GEs040001) GO TO B42

0598 PWALO=PWALL

0599 CDOF=0e0

0600 COP=2, O%PWALL

c6C1 842 COTOT=CDF+COP

0602 corl=CDP2

0603 CDF1=CDF2

o6Ca PWRAT=PWALL/PWALDO

060S XNS1=XNS

0606 Uusi=uus2

06C7 VVSl=vVvsS2

o608 TTS1=TTS2

0609 PPS1=PPS2

0610 RRS1=RRS2

0611 IL=1END~-1

0612 IF(Iles EQeIEND) XNS21=RSH1

n613 IF(1«EQ.IEND) XNS20=RSH

06124 IF(AFULL«GT4+040D0) GO T0 203

0615 GO TO 223

c616 203 CONTINUE

0617 WRITE (64926) S+ XBsRS+sCNS+XNSP{I)+XSHsRSH«NITER

0618 WRITE (6,928) UUSs VVSy TTSs RRSs PPS

0619 928 FORMAT(1HO, BX3HUSH, 10X3HVSHs10X3HTSH+ 10 X3HRSH s 10X3HPSH/3X6F13.6)
0620 WRITE(64864) USP4VSP TSP +RSP4PSP

0621 864 FORMAT (1HO, 8X3HUSP,10X3HVSP+10X3HTSP+10X3HRSEP,10X3HPSP/3X6F1346)
0622 WRITE(6+927) CFCHyHEAT+STAN, COFy COP4CDTOT»PWALL +PWRAT

0623 927 FORMAT(1HO5X)2HCF , 10X4HHEAT »8X4AHSTAN8X3HCDF ¢ 9X3HCDP 4 IXSHCDTOT» 7X

1SHPWALL » 7XSHPW/P0/8F1246)
0624 926 FOFRMAT (1HO »SX+1HSs11XIHX +11XIHR, 11 X3HNSHy9X4HNSHP s BX3HXSHs S X3HRSH,

15X +7HNDO ITER/TF1246.+,16)
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0625 56 FORMAT(3X,3F10e6)
0626 GO TO 223
0627 930 FORMAT(1HO, BXSHU/USH:8XSHV/VSHsB8XSHT/TSHyBXSHR/RSH 4X11HP/PSH(APP
1R) » 6XSHP /PSH, BXSHN/NSH » 8 X4HMACH s 9XGHPITO)
o628 932 FORMAT (3X.9F13.6)
0629 223 CONTINUE
0630 IF(1+EQeNJIL) AM=1,0D0 +XNS
0631 AAK3=140DO
0632 IF(1.EQ.NJ1) AAKS=2, 0D0* AM*D TAN( ALP=PHI)
0633 IF(1.,EQ.1) GD  TO 999
0634 AA3=~=YNSPP(1)+2+0D0%CK*DTAN(ALP3=PHI3)*YNSP(1)+2.0D0%(240D0*RSH~
1 YNSH(I))/DT
0635 AAAL(I)==2,0D0%CK*DTAN(ALP3=-PHI3)
0636 AAA2(1)==2,000/DT
0637 AAA3 (1)=AA3
0638 AAA4(1)=0,000
0639 [F(Ie EQeNJ1) ALP3A=(3. 0D0%AAA3(NJIL)~AAA3(NJIL=1))/2.0D0
0640 [F(T+EQ.NJINC1) ALP3B=(3.0D0%AAA3(NJINC)=AAA3(NJINC+1))/2,0D0
0641 999  CONTLNUE
0642 RS=RS2
0643 S=S+DS2
0644 CALL GEOM(S.DS2+RSsCK4CSF4SIF¢XB)
0645 PHI3=DARCOS(CSF)
0646 PHI1=PHI3
0647 IF(CONEeGTs 04 QLO) PH1S=0,000
0648 IF(CONE+GT+0.0D0) PHIS2=0.000
0649 IF(CONEsLT+040D0O) PHIS==1.00D0
0650 IF(CONE+LT«0s000) PHIS2=-14 000
0651 ALP3=DATAN ( YNSP(I+1)/AXSP(I+1))
0652 SP3=DSIN(ALP3)
0653 CP3=DCOS{ALP3)
0654 SPB3=SP3%kSIF+CP3I*CSF
0655 CPB3=CP3%SIF-SP3*CSF
0656 PHIS= (PHI3=-PHI ) /DS *2.0D0
0657 5010 FORMAT (6F10e4)
0658 RS 2=RS
0659 NITER=0
0660 CONVER==14000
0661 IF(1+EQel) CNSO=CNS
0662 5000 CONTINUE
CN+1 TIME SWEEP STARTS
0663 ENDN SH=( XNS21=XNS20) + XNS21
0664 CALL BOUNDI(EE14FF1)
0665 EE1=0,000
0666 FF1=06000
0667 AAK4=ALP3IB-ALP3A
0668 IEND1 =1END+1
0669 CALL MANISH(YNSPP sYNSP ,YNSH,ENDNSH ;DS s AAK3 ;AAK4& s AAKS 4 AM)
0670 CALL PUSHPA(YNSH, DS s IENDsYNSP)
0671 TIME=TIME+DT
0672 IF(AFULL«GT,0e0D0+ANDs THINs GTe04+0D0) GO TO 6005
0673 IF(THETA.GT,THETAL1) . GO TO 8010
0674 IF(AFULL.GT+040D0) GO TYO 6005

157



AEDC-TR-77-20

FORTRAN IV G LEVEL

0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
[ X-3-1-]
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
o7co
0701
c702
0703
0704
0705
0706
0707
0o7os
0709
0710

8009

8010

78

18

6005

5050
19

1200
1201
6000

21 MAIN DATE = 76296 05/03/31

DO 8009 N=1,1END1
CONV=DABS{YNSH(N)-CNS2(N))
IF(CONV.GT+0,00100) GO TO 8o01¢
CONT INUE
CONV2=DABS(CNSO-XNSH(1 )}
GO T0 18
CONT I NUE
oo 78 N=1, IEND1
YNSHIN)=WWRCNS2(N) +YNSHI{N)*(1,0-WW)
YASPUN)=WAXCNS2P(N)+YNSP(N) *(1s 0=WW)
YNSPP (N)=WW¥CNS2PP(N) +YNSPP(N)*{1:0=WW)
CONT INUE
CALL PUSHPA(YNSHsDS s TEND, YNSP)
IF(NT IME]l1 oGTs 2: ANDe THET As GT e THETAL ) THETA=THETA ~DTHETA
IF(NTIME1eGTs2¢ ANDaTHET Ae GT s THETAL ) NTIME1=0
GO TO 77
CONT I NUE
IF(AFULLeLT«040D0) NTIME=0
AFULL=1.,0D0
Go TO & 4
CONT I NUE
IF(THINSEQe=14000) GO TO 19
I END=IEND-1
THIN=THINI
NTIME=0
AFULL=-1,000
GO TO 77
CONTINUE
CONTINUE
DO 1200 N=1,IEND1!
WRITE(7,1201) YNSHIN) s YNSP{N) s YNSPP{N) s AXSP(N) s XNSHIN) + XNSP(N)
CONTI NUE
FORMAT{6F1248)
CONTI NUE
sTOP
END
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0001 SUBROUTINE PEQSO(WINN,WIN W1 W2NNsW2N,W2,E1,F1+CRNI +CS1+,CS2,8SFAC
1+END.IBACK)
0002 IMPLICIT REAL*8 (A=H, 0-=2Z)
0003 COMMON /PEQS/ DS+DON(201),IM,IE,A1(201),A2(201)+A3(201),A4(201).,
3 XN(202) R
00Ca DIMENS ION WINN(201),WIN(201)oW1(201)
00S DI MENSION E(221)+F(201)+W2NN(201),W2N(201),W2(201)
0006 E({1)=E1
coo7 F(1)=F1
ooce | DO 10 N=2,IM
0009 A=(2.0D0~ALIN) *DN(N) ) /(DN{N=1)*(DNI(N)+DN(N=1)) ) *CRNI
co1cC B=((=2+DO+A1{N)*(DN(N)=-DN(N=1) ) )/CDON(N)*DN(N=1) ) +A2(N) ) *CRNI
1  #A4(N)/DS
co11 C=(2.0D0+A1(N)*¥DN(N=1))/ (DN(N)®(DN(N)+DN(N=1)))*CRNT
0012 D==(WINN(N)+AL(N)*WIN(N) +A2(N)*NI1(N))*(1.CD0-CRNI)
1 ~=A3(N)+A4(NI*W1(N)/DS
0013 E(N)==C/(B+A*E(N~-1))
0014 10 FI(N)=(D=A*F(N=1))/(B+A*E(N~-1))
0015 IF (SSFAC) 11,11,12
ce16 12 SK1=CS1+(DNCIM=1142,0D0%DN(EM) )/(DN(IM)*(DN(IM)4+DN(IM=-1)))
1 ~(DON{IM=1 ) +DNCIM) I *E( IM)/ (DN( IM=1)*DN(IM))
2 “DN(IM)*(B*E(IM)+C)/(AXDN(IM=1)*(ON(IM)+DON(IM=1)))
0017 SK2==CS2+(DN(IM=1)+DN(IM))*F(IM)/(DN{IM=1) *DN( IM))
1 +ON(IM)*(B¥F(IM)=D)/(A*DN(IM=1 )*(DN(IM~1)+DNC(IM)))
0018 W2(IE)=SK2/SK1
0019 GO TO 13
0020 11 W2(1E )=END
0021 13 KON=IM
0022 DO 20 N=2,IE
0023 W2(KON )=E(KON)*W2(KON+ L) +F(KON)
0024 20 KON=KON=-1
002s W2(1)=El%W2(2)+F]
0026 GO TO0 €(21+5) + IBACK
o027 21 CONT INUE
0028 DO 30 N=2,IM
0029 W2NN(N ) =2, 0D0* (W2(N+1) /DNIN) +W2(N=1)/DN{N=1) )}/(DNIN)+DN{(N=1))
1 =2+0DI*W2(N)/(DONI(N)I*DN(N=1))
0030 30 W2NIN)=(DN(N=1)*W2(N+1) /ON(N)=DN(N)*W2(N=1)/DON(N=1))/(DN(N)+
1 ON{N=1) )#(DN(N)=DNIN=1) }xW2(N)/(DNIN)*DN(N=1))
0031 W2N(1)==W2(1)*(DN(2)42,0D0%DN(1) )/(ONC1)*(DN(2)+DNC(1)))
1 +W2(2)*(DN(2)+DN(1) )/ (DN(2)*DN(1))
2 =W2(3)*DN(1)/(DN(2)*(DN(1)+DN(2)))
0032 W2N(IE)=W2(IE)*(ON(TM=1)+2,0D0%DON{IM))/(ON(IM)*(DN(IM)+DN( IM=1)))
1 ~W2( 1E=1)*(DN(IM~1)+DN(IM))/(DNL IM)*DNC(IM=1))
2 *W2(IE=2)*DN(IM) Z/(DN(IM=1)*(ONCIM) +DN(IM=1)))
0033 W2NN(1 )==W2N(J)*(DN(2)+2+DO*DN(1) )/(DN(1)%(DN(2)+DN(1)))
1 +W2N(2) *(DN(2) +DN(1) ) /(DN(2)*DN(1))
2 =~W2N(3 ) *DN(1)/7(DN(2) *{ON(1)+DN(2)))
0034 W2NN(IE)=W2N(IE) *(DN(IM=1)42. DO*DN(IM) ) /(DN( IM)*(DN(IM)#DN(IM=1)))
E +W2N(IE-2)*DN(TM) /(DN(IM=1)%(DN(IM)4DN(IM=1)))
1 =“W2N(IE=1)*(DN( IM=1)+DN(IM))/(DNCIM)*DN(IM=1))
003S GO TO 100
0036 S CONTINVE
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0037 W2N( 1)=0.0000
0038 ele) 101 N=2, [E
0039 W2N(N)=(W2(N)=W2(N=1) )/DON(N=1)
004acQ W2NN( N)=(W2N(N)=W2N(N=-1))/DN(N-1)
0041 101 CONT INUE
0042 W2NN(1)=(W2N(2)=-W2N(1) )/DN(1)
0Cc 43 100 CONTINUE
0044 RETURN
c04s END
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onc1 SUBROUTINE BOUND(WINN,WIN.Wl,CB1,CB2,E14F1,CRNI)
0002 IMPLICIT REAL*¥8 (A-H, 0-2)
coo03 COMMON /PEQS/ DS+DN(201)sIMsIEsA1(201),A2(201)+A3(201)+A4(201),
1 XN(202)
0004 DIMENS ION WINN(201) ,WIN(201),w1(201)
000S A=(2,0D0~A1(2)*DN(2))/(DN(1) *(DN(2)+DN(1)) ) *CRNI
0006 B=((=2.D0+A1(2) *(DN(2) ~DN(1) ))/7(DN(2)*DN(1) )+A2(2) )*CRNI+A4(2)/DS
0007 C=(2.0D0+A1(2)*DN(1))/(DN(2) *(DN(2)+DN(1)))*CRNI
ocos D==(WINN(2)+Al (2)*WIN(2)+A2(2)%W1(2))*(1.0D0=CRNI)
1 =A3(2)+A4(2)%xwWil(2)/0S
00cCc9 XK1=CB1=(DN(2) +2,0DC*DN( 1))/(DN( 1) *(DN(2)+DN(1)))+A%DN(1)/7(C*DN(2)
1 *(ON(2)+DN(1)))
0010 XK2=(DN(2)+DN(1))/7(ON(2) *DN( 1) )+B¥*DN(1 )/ (C*DN(2)*(DN(2)+DN(1)))
0011 XK3=CB2=D*DN(1 )/ (C*DN(2) *(DN(2)+DN(1)})
o012 El==-XK2/XK1
0013 Fl==XK3/XK1
0014 RETURN
0015 END
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0001 SUBROUTINE GEOM(S,DSsRS+CK+CSF,SIF,X8)
SPHERE -CONE

nocz2 IMFLICIT REAL*8 (A-H, 0-2)

coo3 COMMON/BASU/ XS3 CONE

ocosa COMMON/ PUSHY/ DERIV1 s THMAX

0o0s F=12, §0D00

coné XS=S+DS

0007 XS3=XS

o008 SMAX=3,141552653589793200/2,0D00~THMAX

coce IF(XS«GTaSMAX) GO TO 100

0010 RS=DSI N( XS)

0011 CK=140D0~14000/(1+0D0+DEXP(=F*( XS~SMAX) })

co12 CK=1.D0

0013 CCNE=-1,0D0

0014 CSF=RS

0015 SIF=DCOS(XS)

0016 XB=14000-DCOS( XS)

0017 GO TO 200

0018 100 CONT INUE

0019 XS1=XS-SMAX

o020 CSF=DCOS(THMAX )

o021 SIF=DSIN(THMAX)

0022 CK=1+0D0-142D0/(1.0D0+DEXP(~F*( XS=-SMAX) ))

0023 CK=0, 000

0024 CONE=1,000

0925 RS=DSIN(SMAX) +XS1*DSIN(THMAX)

co02s XB=14 OD0~DCOS( SMAX) +XS1 *DCOS(THMAX)

0027 300 FORMAT (4F10+5)

0028 200 CONT INUE

0029 RE TURN

0030 END
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0001
0002
0003

0004

0005

0006
0007
ooo0s
oon9
oc10
o011
0012
0013
oc1a

0015
0016
0017
0018
0019
0020

0021

o022
0023
0024
oc2s
on26
o027
09028
0029
0030

0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
004t

0042
0043
004s

10

20

1

SHVALS

SUBROUTINE SHVALS (SP, CP, SPB,

1
2
3

1

COMMON /PEQS/

GAMP

GA MM

RM AC
FOGQ
SPQ
EP SQ

Q

CPBy TTSHs

S
TPSH
TTS
TTS1
TSP
Trs2

DATE = 76296

VRSH

UPSH
vIsco
uusi
uus2
uUspP
uus

AEDC-TR-77-20

05703731

URSHs PPSH, ID)

.

XNS .
vvs .
vVvsi
vvsa
vVSP

DSsDN(201 )+ IMsIE,AL1(201),A2(201),A3(201),A4(201),

IMPLICIT REAL®8 (A-H, 0-2Z)
COMMON /INSH/ CONO . GAM
EPS . RMAC
COMMON/OUTSH/ PPS » RRS
PPS1I RRS1
PSP » RRS2
PPS2 “ RSP
XN(202)
= GAM + 14000
= GAM = 1.0D0
= RMAC * RMAC
= 4,0D0/( GAMP*GAMP )
= SP * SP
= EPS ¥ EPS
=

DEN

RMACQ * RMACQ * SPQ

URSH = SP * CP / (SP # EPSQ * VISCO ¥ UPSH/XNS)
TTSH = ((URSH-CP)**2 + FCGQ*GAM*SPQ +(2.0D0/GAMM-FOGQ*GAMM)/RMACQ
= FOGQ/DEN)*0.5D0%SP/(SP+EPSQ*CONO*TPSH/XNS)

PPSH =(2.,000%SPQ = GAMM/ (GAM*RMACQ)) / GAMP

RRSH = GAM % PPSH / (GAMM #* TTSH)
VRSH = =SP / RRSH
GO TO (20+5)

URSH * SPB 4+ VRSH * CPB
=-URSH ¥ CPB 4+ VRSH * SPB
+0001) GO TO 10

CONT INVE
TrS2 = TTSH
PPS2 = PPSH
RRS2 = RRSH
uusz =

vvs2 =

IF (S «GEe
UUs1 = =uusz2
VvsS1 = VvSs2
ITSl = TS
PPS1L = PPS2
RRS1 = RRS2
CONTINUE

UuUs = (Uuslt
VS = (VVS1
TTS = (TTS1
PPS = (PPSI1
RRS = (RRS1
USP = (Uus2
VSP = (VvVS2
TSP = (TTS2
PSP = (PPS2
RSP = (RRS2
CONT INUE

RE TURN

END

10

vus2)
vvs2)
TTS2)
PPS2)
RRS2)
uust )
vVS1)
TTS1)
PPS1)
RRS1)

NN NNSNNNSNNANAN
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0001 SUBRDUT INE B8OUNDI(EE1 ,FF1)
0002 IMPFLICIT REAL*8 (A~H, 0-2Z)
0003 COMMON /PEQS/ DSsDN(201),IM,IE+A1(201),A2(201)+A3(201),A4(201),
1 XN(202)
0004 A=1.000
000S B==2, 0D0+DS*DS*A2(2)
o0ecs C=1.0D0
0007 ==-DS*DS*A3(2)
ocos EE1=(B+4.0D0*C)/(3.0D0%C-A)
0009 FF1==D/(3.0D0*C~-A)
co1n RETURN
co11 END
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0001 SUBROUT INE PUSHPA(YNSH,DS ,1END,YNSP)
0002 IMPLICIT REAL*B (A-~H, 0-1)
0003 COMMCN/KINNI/ XNSH(110),XNSP(110)4XNSPP(110)
0004 COMMON/PUSHY/ DERIV1+THMAX
0005 COMMON/CON/ NJINC,NJL,RUMP
0006 DIMENSION YNSH(110),YNSP(110)
0007 DIMENSION ACKP(110) ,APH(110)
0008 COMMON/BASU/ XS$3 CONE
0009 CCMMON/MANIS/ AXSHI110),AXSP(110),AXSPP(110)
0010 XS$=0.0D0
0011 IENDL1=IEND+1
0012 Do 500 I1=2,1END1
0013 CALL GEOM (XS,DS+RS,CK,CSF,SIF,XB)
0014 XNSK(I)=(YNSH(I)-RS)/CSF
0015 AXSH(I)=XB-XNSH(I)*SIF
0016 ACKP(TI)=(1.COO0+CK*XNSH(I))
0017 APH(I)=DARCOS(CSF)
0018 XS=XS3
0019 500 CONT INUE
0020 XNSH{1)=(4.0D0*XNSH(2)~XNSH(3))/3.003
0021 AXSH(1)=—XNSH(1)
0G22 DC 12 N=2, IEND
0023 IF(RUMP.LT.0.0D9) GO T0 510
0024 IF(N.EQ.NJ1) GO T0 501
0025 IF(N.EQ.NJNC) GO T0 504
0026 510 CONTINUE
0027 AXSP(N)=(AXSHIN+1)=AXSH(N-1))/(2.0D0*DS]
0028 GO T0 502
0029 501 CONTINUE
0030 AXSPINJL)=(3.0D0*%AXSHINJL) -4, 0DO*AXSHINJL1-1) +AXSH(NJ1=-2))}/
1(2.000%DS)
0031 GO T0 503
o032 504 CONT INUE
0033 AXSPININC) =(4.0D0*AXSHININC+1)~AXSH(NINC+2) =3 .0DO*AXSHINJINC) )/
1(2.000%0S)
0034 503 CONT INUE
0035 502 CONTINUE
0036 12 CONTINUE
0037 XNSP(1)=0.000
0038 AXSP(11=0.000
0039 AXSP{IEND1)=(3.0D0%AXSH{IEND1)~4.0D0«AXSHIIENDL-1)+AXSH{IEND1=-2))
1/(2.000%0S)
0040 00 860 I=1,IEND1
0041 IF(I.EQ.1) GO T0 81l
0042 TALP=YMSP(I)/AXSP(I)
0043 XNSP(I)=ACKP(I)*((TALP=DTAN(APH(I)))/(L.0+TALP*DTAN(APH(I))})
0044 GO T0 -
0045 912 CONTINUE
0046 IF{I.LT.IENDL) XNSP(I)=(XNSH(I+1)=-XNSH(I~1))/(DS*2.00D0)
0047 IF{I.EQ.IENDL) XNSP(I)=(2.0D0*XNSH({IENDL)-4.0DO*XNSHIIENDL-1)
1+XNSH(IEND1~2})/(2.0D0%CS)
0048 511 CONTINUE
0049 gl CONTINUE
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0us50 860 CONTINUE

0051 XNSPP(1)=(2.000%XNSH{1)=5.0000%XNSH(2)+4.0D0*XNSH(3)=XNSH(4))
1/(0S*CS)

0052 RETURN

0053 END
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coo1 SUBROUT INE DERIV(DS,1END, IEND1 4 AXNSH, AXNSP,AXNSPP)
ooc2 IMPLICIT REAL*8 (A=H, 0-2)

0003 D IMENSION X1SP(110)sA1SP(110)+X1SH(110)
0noa DIMENSION YNSH{110) s YNSP(110),¥YNSPP{110)
0005 DIMENSION ACKP(110) +APH(110)

0006 COMMON/CON/  NJNC 4NJ1 4 RUMP

cocr COMMON/BASU/ XS3 , CONE

0008 COMMON/KINNILY/ XNSH(110),XNSP(110),XNSPP(110)
0009 COMMON/MANIS/ AXSH(110),AXSP(110),AXSPP(110)
0010 COMMON/PUSHY/ DERIV1 «THMAX

o011 DIMENSION AXNSH{119) s AXNSP(119)sAXNSPP(119)
0012 DERIV1=14000

0013 AHALF=1.0D0

0014 AHALF ==1,000

0015 IEND1=IEND+1

0016 READ( 5180) (XNSH{I) s 1=1,8)

0017 READ( 5,80) (XNSH(I)41=9,16)

o0o1s READ(5,81) (XNSH(I),1=17,22)

0019 READ( 5480) (XNSH(I),1=23,30)

0020 READ(5,80) (XNSH(1),1=31, 38)

0021 READ(S5,81) (XNSH(1),1=39,44)

0022 READ( S,80) (XNSH(I),1=645,52)

0023 READ(S5,80) (XNSH(I),1=53,60)

c02s READ(5+82) XNSH(61)

0025 82 FORMAT(F1046)

0026 80 FORMAT(8F10456)

0027 81 FORMAT(6F1046)

0028 XS=0e 0D0

0029 oo 500 I=2, IEND1

0030 CALL GEOM (XSy1DSsRS+CK+CSF,SIF4XB)

0031 YNSH( 1)=RS+XNSH(I ) *CSF

0032 AXSH( I)=XB=XNSH(I)*SIF

0033 ACKP(1)=(1s0D0+CK*XNSH(I)})

0034 AFH(T )=DARCOS (CSF)

0035 IF(I+EQe2) YS1=RS

0036 XS=XS3

0037 500 CONTINUE

0038 YNSH( 1)=0,000

0039 AXSH( 1)==XNSH(1)

0040 Do 12 N=2,1END

0041 IF(RUMP.LT+0.0D0) GO ToO 510

0042 IF(Ne EQaNJ1 ) GO To 501

‘0043 IF(Nes EQeNJINC) GO TO S0Aa
00as 510 CONT INUE
0045 YNSPCN)=CYNSHIN+1 ) =YNSH(N=1))/(2.0D0%0DS )

0046 AXSP{N)=(AXSH{N+1)=AXSH(N=1))/(2+0D0*DS)

00a7 Go TO 502

00as 501 CONTINUE

0049 AXSP{NJ1)=(3,0D0*AXSH(NJ1)=4, 0DO*XAXSH(NJI1=1)+AXSH(NJI1=2))/
1(2.,0D0%DS)

0050 YNSPINJ1)=(3,0D0%YNSHI{NJ1)=4,0D0*%YNSH(NJLI~1 )1+ YNSHINJ1=2) )/
1(2.,000#DS)

0051 G0 'T0 503
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0052 504 CONT INUE
00S3 AXSPINJINC)=(84.0D0 *AXSHINJINC+1)~AXSHINJINC+2) -3, 0D0*%AXSHI(NJINC) )/
1(2.000%DS)
0054 . YNSP (NJNC ) =(4¢ ODO* YNSH{NINC#1 ) =YNSHINJINC+2) =3, 0D0 ¥ YNSH(NJINC ) )/
1(2.000*DS)
00SS 503 CONT INUE
00S6 S§02  CONT INUE
0057 12 CONT INUVE
0058 YNSP(1)=(4,0D0%YNSH(2) =YNSH(3) =3,0D0%YNSH{1))/(2.0D0%DS)
00s9 YNSP(1)=XNSH(1)+YS1/0DS
0060 YNSP(1)=XNSH(1 )+14000
0061 XNSP( 1)=0,000
0062 AXSP(1)=0+000
0063 AXSP( TEND1 )=(340D0 *AXSH(TEND1 ) =4 ,0D0%*AXSH{ IEND1-1 )+ AXSH{ IEND1-2))
1/(2.0D0%DS)
0064 YNSP( IEND1)=(340D0*YNSH(IEND1)-4,0D0O*YNSH(IEND1=1 )4+ YNSH(IEND1~2))
1/( 2,0D0%DS)
0065 Do 700 I=1,1ENDI
0066 IF(1eEQel) G0 TO 600
0067 TALP=YNSP(I)/AXSP(I)
c IF(RUMPsLT¢04+0D0) Go TO 512
o068 XNSP( T)=ACKP{I)*{(TALP=DTANCAPH(I|))/(1.04TALP*DTANIAPH(I))))
0069 Go 7vO 511
0070 512 CONTINUE
0071 IF(I4LT.IEND1) XNSP(I)=(XNSH{I+1)=XNSH(1))/(2.0D0*DS)
0072 IF(I¢EQe IEND1) XNSP (I)=(3,0D0*XNSH( IEND1)~440DO*XNSH( IEND1~1)
1#XNSH( IEND1=2) )/ (24000DS)
0073 511 CONTINUE
0074 600 CONT INUE
0075 700 CONT INUE
0076 Do 28 N=2, IEND
c IF(RUMP+LT+0+0D0) Go TO 530
0077 IF(Ns EQaNJI1) Go TO s31
0078 IF(Ns EQsNJINC) GO TO §32
0079 530 CONT INUE
0080 YNSPP (N)={ YNSH (N+1)¢YNSH(N=1)=24,0D0*YNSH(N) )/ (DS*DS )
oca1 GO TO 533
ooa2 531 CONT INUE
cosa3 YNSPPIN)=(2s0DO0O*YNSH(N) +4,0D0O*YNSH(N=2) =S+ 0DO*¥YNSH(N=1}=YNSH(N=3)
1)7(DS*DS )
0084 GO TO 533
ooss 532 CONT INUE
ccas YNSPPIN)=(2¢9DO*YNSHIN) =5s0D0*YNSHIN+1) +44 000K YNSH(N+2)~YNSH(N+3)
1)/ (DS*DS)
0087 533 CONT INUE
ooss 28 CONT INUE
0089 YNSPP (1)=(4,0DO*YNSP(2) ~YNSP(3)=3.0D0%YNSP(1))/(2,0D0%DS)
0090 YNSPP(1)=04000
0091 YNSPP(IEND1)=(3+0D0*YNSP(TEND1)~4,0D0*YNSP( IEND1~1)+YNSP( IEND1~2)
11/ (2, 0D0*DS)
0092 YNSPP( IEND1)=(240D0*YNSH(IEND1)=5.0D0KYNSH( IEND1~1)+440D0*YNSH(

1TEND1~-2)~YNSH( IEND1~3))/ (DS*DS )
c e ek skl ok o ok o ool ok e ok ol ook o o R o o ok koo kol K ok kR kR Kk

168



AEDC-TR-77-20

FORTRAN IV G LEVEL 21 DERIV DATE = 76296 05703731
0093 TF{AHALF«LT+04000) GO T0 6006

o094 APARA==140D0

c095 APARA=1+0D0

0096 6019 CONTINUE

0097 (»]a] 6009 I=1,1END

cosge AXNSH(I+I)=(YNSH(I }J+YNSH(I+1))/2,0D0

0099 AXNSPUI+I)=(VYNSP(I)+YNSP(I+1))/2.000

0109 AXNSPP(I+1)=(YNSPP(I)+YNSPP(I+1))/2,000

o101 ALSP{I+1)=(AXSP(I)+AXSP(I[41))/2.0D0

o102 XISH{I+I)=(XNSH(I)+XNSH(I+1))/2.000

0103 X1SP( I+ I)=(XNSP(I)4XNSP(I+1))/2.0D0

0104 6009 CONT INUVE

0105 NJJI=NJ1+NJI

0106 1 2END=2%IEND+ 1

0107 11=1

0108 Do 6007 I=1, 12END,2

0109 AXNSHCI )=YNSH(II) -

o110 AXNSP(I)=YNSP(II)

0111 AXNSPP(I)=YNSPP(II)

0112 X1SH( I)=XNSH(IT)

113 X1SP( I)=XNSP(I11)

011a AI1SP(1)=AXSP(II)

c115 II=11+41

0116 6007 CONT INUE

o117 NJI=NJJI

o118 NJNC=NJJ1+1

0119 1END1=T2END

0120 I1END=1END1~1

0121 Do 6011 N=1, TEND1

0122 XNSH(N)=X1SH(N)

0123 AXSP{N)=A1SP(N)

c12a XNSP({ N)=X1SP(N)

0128 6011 CONTINUE

o126 AXNSHINJJL)=(2+0D0* AXNSH(NJJ1=1)=AXNSH(NJIJI1~-2))
0127 AXNSP(NJJ1)=(2+0D0O*AXNSP(NJJI1=1)=AXNSP(NJJIL1=2))
0128 AXNSPP(NJJ1)=(2s0D0%AXNSPP(NJI1~=1)=AXNSPP(NJIJL1=-2))
0129 XNSH{NJJ1)=(2¢ ODO*XNSH{ NJJ1~1)=XNSHINJI1=-2))
0130 XNSP{NJJL1)={2e 000 *XNSP{NJJL1=1)=XNSP(NJJI1=2))
0131 AXSP(NJJI1)=(2.0D0%AXSP(NJJIL=1)=AXSP(NJJI1=2))
0132 IF( APARA.GT«040DC) GC TO €020

0133 DO 6021 I=1,1ENDIL

013a YNSH( I )=AXNSH( 1)

0135 YNSP( I)=AXNSP(I)

0136 YNSPP (1 )=AXNSPP(I)

0137 6021 CONT I NUE

0138 GO T0 6019

0139 6020 CONTINUE.

0140 6006 CONT INUE

0141y IF(AHALF+GT+040D0) GO TO 6010

ek ke ek sk ok e ook ok ok Mk ok e ook dke ok ofok ke sk ok ok koo e sl ook ok ok ok 3 ok ok ok ok e ok ok ok ook ok Xk ok

0142 DO 1200 N=1,IENDI1

0143 READ (541201 YNSHIN) s YNSPIN) s YNSPP(N) s AXSP(N) s XNSHIN} s XNSP(N)
0144 1200 CONTINUE
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0145 XNSPP({1)=(2,0D0O*XNSH(1)=5,00D0% XNSH{2)+4,0DO0*XNSH(3)~XNSH(4))
1/(DS*DS)

0146 oc 6008 I=1,1ENDI

0147 AXNSH(T)=YNSH(I)

Cl148 AXNSP{I)}I=YNSP(I)

0149 AXNSPP(1)=YNSPP(I)

o150 6008 CONTINVE

01851 6010 CONTINUE

c152 1201 FORMAT(6F12.8)

0183 ANSH=YNSH{IEND1)

0154 RETURN

01855 END
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coc1 SUBROUT INE MANISH(ARXX4ARX yARyRLsDXsAAK3,AAKS JAAKS ) AM)
ooo2 IMPLICIT REAL*8 (A-H, 0-=2)

0003 COMMON/MANU/EELsFF1+IENDyIEND1+AAAL1(110),AAA2(110)+AAA3(110)
1AAA4{110)

0004 COMMON/CON/ NJINC sNJ1 3 RUMP

0005 DIMENSION ARXX(110),ARX(110),AR(110)

0006 DIMENSION E(120),+F(220)

0007 E(1)=EE1

coecs F(1)=FF1

0009 XI=0e S0D0

0010 RO=0s ODO

o011 IEND1=I1END+1

0012 IM=IENDI -1

0013 IF(RUMP4GT«0.000) GO T0 501

0014 AM=1,000

0015 AAK3=1,0D0

0016 AAK1=1,000

0017 AAK4=0,0D0

co1ls AAK5=0, 000

0019 501 CONT INUE

0020 Do 10 N=2, IM

0021 ALP1IB=AAA1(N)

0022 ALP1A=AAAL(N)

0023 ALP2=AAAZ2(N)

0024 ALP3B=AAA3(N)

0025 ALP3A=AAA3(N)

co026 AK1=1,000

0027 AK3=1,0D0

ooz28 AK4=0,0D0

0029 AKS5=0,000

0030 IF(NeLTeNJ1) GO TO 11

€931 IF(Ne GTeNJINC) GO TO 11

0032 AK1=AM

0033 AK3= AAK3

0034 AK&4=A AK4

0035 AKS=AAKS

00386 IF(Nes EQeNJ1) GO TO 12

0037 API=XI*(AK1~-DX*X]*AK5/2 ,000 )+(1.000-X1I)

00 38 AP2=XI*(1s0D0~XI)*(AK1=CX*kXI*AKS/2,0D0) +XI*XI*AK3/2,0D0+
1(1+0D0=X1)%*%x2,0D00/24000

0039 AP3=AP1+2,000%AP2

0040 A=240DO0/({DX*DX*¥AP3)=ALP1B/(DX*AP3)

0241 B==2¢ CO0*(1.0004AP1 )/ (DXXDX*AP3 ) +ALP1B*(1.000~2.0D0%AP2)/(DX*AP3)
14ALP2

004z C=AP1*2,0D0/{DX*DX*AP3) +2,0D0*%ALPI1B*AP2/(DX*AP3)

0043 D=-ALP3B+XI*XI*AK4/AP3~DX*ALP1B*XI %X [*%AK&4/(2.0D0%AP3)

0044 GO TO 13

0045 12 CONT INUE

0cas AS=(]1e0D0=XI)*¥(14000~-DX¥(1e 0D0~=XI)*AKS/(2.0D0*AK3))/AKI1

0047 AP1=X[+AS

ooas AP2=X [*X[/240D0#XI*AS+(1,0D0=XI)*%2,0D0/(2:.0D0%AK3)

0049 AP3=AP14+2,0D0%AP2

cose A=AP1 %2,0D0/( DX*DX*AP3)~2,0D0*%ALP1A%AP2/(DX*AP3)
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0051 B=-2,0D0%(1¢0D0+AP1)/(DX*DX*AP3)~ALP1A%*(1,000~2.0D0%AP2)/ (DX*AP3)
1+ALP2

oo0s2 C=2,000/(DX*D X*¥AP 3 ) +ALP1A/(DX*AP3)

00S3 Al14=AK4/AK3

0054 g D=~ALP3A-ALPL1 A*DX*((1+0D0~X1)*%2,0D0)*A14/(2.0D0%AP3)=(1,000~-XI)
1%%2,0D0%A14/AP3

00S5S GO TO 14

00sS6 11 CONTINUE

00s7 A=1s0D0/(DX¥DX)=AAAL(N) /(2. 0DO*DX)

00ss B==2.0DC/ (DX*DX)+AAA2(N)

00S9 C=1.000/(DX¥DX)+AAAL(N) /(2. 0D0%DX)

0060 D==AAA3(N)

0061 14 CONTINVE

0062 13 CONT INUVE

0063 E(N)==C/(B+A*E(N~-1))

00 64a FAN)=(D=A*®F(N=1) )/ (B+A*E(N-1))

0065 10 CONTINUE

c066 KON=IM

0067 AR(IEND!)=RL

0068 AR(1)=RO

069 (2]s] 20 N=2, IEND1

0070 AR(KON)=E(KON) *AR(KON+1 )+F(KON)

0071 20 KON=KON=-1

C CALCULAT ION OF DERIVATIVES

0072 DO 30 N=2,1IM

0073 IF(NsEQeNJ1) GO TO 31

0074 IF(Ne EQeNJINC) GO TO 40

0075 ARX(N)I=(AR(N+1)=AR(N-1) )/(2,0D0%DX)

[l ) ARXX(N)=(AR(N+1)+AR(N=1)=-2.000%AR(N) ) /(DX*DX)

0077 GO T0 50

0078 31 CONT INUE

0079 AK1=AM

ooac AK3=AAK3

o081 AKa=AAK 4

o082 AKS=AAKS :

0083 AS=(1e0D0=XI)*(140D0~DX*(1,0D0~XI)*AKS/(2,0D0%AK3))/AK1

f084 AP1=X1+AS

ooss AP2=X1%*X1/2¢00D0+X[*AS+( 1s0D0-XI)**2,0D0 /(2. 0DO*AK3)

oos8é AP3=AP1+2,0D0%AP2

0087 Al14=AK4/AK3

ooas ARX(N)=(AR(N+1 )=2+,0CO*AR(N=1) *AP2-AR(N) *(1,0D0~-2, ODO*AP2) +DX*DX
1%( 1e ODO=XI ) *( 1 0D0O=XI)*A14)/(DX*AP3)

ooa9 ARXX(N)=(AP1*AR{N=~1)+AR(N+1)=AR(N)I*(AP1+1.000)+DX*DX*(1,0D0-XI)*
1(1.0D0-X1)*A14/2.0D0)/(DX*DX*AP3/2,0D0)

0090 GO TO0 50

0091 40 CONT I NUE

o092 AKL=AM

0093 AK3=AAK3

0094 AKa=AAK4

0095 AKS=AAKS

0096 AP1=XI*(AK1-DX*XI*AKS/24000)+(10D0~-X1I)

0097 AP2=XI*(120D0=XI)*¥(AK]l~CX*X [*AKS/2.0D0)+ XI*XI*AK3/2.0D0+

1(1+000-X1)%%2,0D0/2,C00
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0058 AP3=AP1+2.0C0*AP2

0099 ARX(MN)=(2.0D0*AP2*AR(N+1)+AR(N)*(1.000-2.0D0*AP2)-AR(N-1) +DX*DX
1*X12X1*¥AK4/2.0C0) /(DX*AP3)

0100 ARXX(N)=(AR(N=1)+AR(N+1)*APL=AR(N)}*(1.0DD+AP]1 )=DX*¥DX%XI*X ] *AK &
1/2.000) /(DX*DX*AP3/2.000)

0101 50 CCNTINUE

0102 30 ., CONTINUE

0103 ARX(1)=(-3.0D0*AR(1)+4.000*AR(2)-AR(3))/(2.000%DX)

0104 ARX{IENDL)=(3.0D0*AR(IEND1)-4.0D0=AR(IEND1-1)+AR(IENDL=-2))/
1(2.000%DX)

0105 ARXX(1)=0.0D0

0106 ARXX(1)=(2.000%AR(1)~-5.000*%AR(2)+4.0D0*%AR(3)=AR(4))/(DX:DX)

0107 ARXX(IEND1)=(2.0D0¥AR(IENDL)~5.0C0%AR (IEND1-1)+4.000%AR(] END1~-2)
1-AR(IEND1-3))/(DX*DX)

0108 RETURN

0109 END
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INPUT CATA
3.500000 11.000000 7.500000 0.800000 0.000010 1.40000) 9. 700000 2
NO THIN SHCCK LAYER NO WALL SLIP NQ SHOCK SL1P NO STEPS IN N = 101 NC STEPS IN S =
MINF TH/TO EPS REY{INF) REY(S)
13.41900 0.0741 0.104S 0.1520 04 0.1310 03
s X R NSH NSHP XSH RSH N ITER
0.0 0.0 0.0 0.1312%2 0.0 =-0.1312%2 0.0 22
USH VSH TSH RSH PSH
V.2 =0.170417 0.457582 5.827150 0.829846
use VsP TSP RSP PSP
0.953739 0.0 0.0 -0.000000 0.0
CF HEAT STAN CDF coe ‘coToT PWALL PW/PO
0.0 0.086606 0.182013 0.0 1.842199 l.842190 0.921095 1.000000
S X R NSH NSHP XSH RSH NJO ITER
0.137133 €.005388 0.136704 0.129787 =-0.021954 -0.119180 D.154446 22
USH VSH TSH RSH PSH
0.118740 -0.166786 0.491211 5.835012 0.818925
usp VSP TSP RSP PSP
0.874223 0.050466 ~0.056&66 =0.032436 ~0.165709
[ HEAT STAN CCF cop : coTor PWALL PW/PO
0.03071¢ 0.087050 0.182%47 0.004213 1.788548 1.792761 0.899922 0.977014
S g R NSH NSHP XSH RSH NO ITER
0.274266 0.037376 0.270840 0.131982 0.053970 =0.089673 0.306586 28
usH VSH TSH RSH PSH
0.232639 =0.155419 0.473214% 5.828668 0.788073
uUsp vsp TSP RSP PSP
0.783952 0.116371 -0.165070 -0.C59678 -0.282969
CF HEAT STAN CCF coep coToT PWALL PW/20
0.060506 0.083455 0.175392 0.010444 1.735561 1.746005 0.845565 0.918000
S : X R NSH NSHP XSH RSH NO ITER
0.411399 0.083438 0.399892 0.140863 0.075557 -0.045672 0.456222 31
USH VSH TSH RSH PSH
0.339555 -0.135769 0.445626 5.817947 0.740780
use vsP TSe RSP PSP
0.772923 0.169457 -0.239527 =0.C57640 -0.410606
CF HEAT STAN COF cce coror PWALL PH/PO
0.081402 0.075554 0.158787 0.015760 1.653118 1.672878 0.761814 0.827075
S X R NSH NSHP XSH RSH NO ITER
0.548532 0. 146709 0.521435 0.153348 0.106525 0.015859 3.601396 33
USH VSH TSH PSH PSH
0.438613 =0.107593 0.410673 5.802299 0.680864
use vse sp RSP psp
0.691323 0.236448 -0.278643 -0.133720 =0.477657
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29 DS =).137



0.371583

-0.299625

0.331978

-0.286747

0.294536

-0.261860

0.259543

-0.238522

0.225124

~0.259566

CCF
0.031548

NSH
0.171189

RSH
RSP
CDF

0.044853

NSH
0.196135

RSH
RSP
CDF

0.058590

NSH
0.230085

RSH
RSP
CCF

0.071825

NSH
0.27€469

RSH
RSP
COF

0.084468

NSH
0.343669

RSH
RSP
COF

0.096233

NSH
J.439152
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5.781352

-0.175594%

5.755171

-0.210476

5.724023

~0.244099

5.686685

-0.286226

5.638285

-0.414421

AEDC-TR-77-20

PWALL PW/PO
J.654892 0.710993

NO ITER

0.741583 33

PWALL PH/PO
9.538326 0.584442

NO ITER

0.876829 32

PraLL PW/PO
J.423802 0.460106
NQ ITER
L.007627 St
PWALL PW/PO

0.321772 0.349336

NO ITER

1.135894 &0

PWALL PW/PO
0.233792 0.253820

MO ITER

1.268295 55

PWALL PW/PD
0.159441 0.173100

NO ITER

1.410617 46
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USH VSH TSH RSH PSH
0.761950 0.249529 0.191662 5.574810 0.305444
use vsp TSP RSP PSP
0.187022 0.534116 -0.275811 -0.606137 =-0.4T2741
CF HEAT STAN COF cop coToT
D.062026 0.015841 0.033292 0.107395 0.967262 1.074657
S X R NSH NSHP XSH
1.508463 0.937454 1.000395 0.529161 0.509632 0.868384
USH VSH TSH RSH PSH
0.783683 0.280815 0.167276 5.515229 0.263647
use VsPpP TSP RSP PSP
0.189939 -0.110097 -0.118247 -0.340903 -0.202664
CF HEAT STAN CDF cop coTOT
0.045153 0.012505 0.026280 0.117948 0.937070 1.055018
S X R NSH NSHP XSH
1.6455%6 1.073414 1.018294 0.5963¢64 0.470475 0.995573
USH VSH TSH RSH PSH
0.807850 0.265884 0.152159 5.467445 0.237738
usep vse TSP RSP PSP
0.158379 -0.106792 =-0.099747 -0.347341 -0.170948
CF HEAT STAN COF cop coTar
0.040721 0.010799 0.022696 0.125728 0.905735 1.035462
S X R NSH NSHP XSH
1.782729 1.209373 1.936193 0.£58261 0.432264 1123453
USH VSH TSH RSH PSH
0.827629 0.251828 0.13964¢ 5.420094% 0.2162%4
use VSP TSP RSP PSP
0.127609 -0.097378 -0.081236 =0.335642 =-0.139215
CF HEAT STAN COF cop corer
0.036198 0.009647 0.020275 0.131422 0.883284 1.014706
S X R NSH NSHP XSH
1.919862 1.345333 1.054093 0.715520 0.402819 1.251939
USH VSH TSH RSH PSH
0.843984 0.238788 0.129191 5.373517 0.198377
use VSP TSP RSP PSP
0.106750 -0.090286 -0.068657 -0.331244 -0.117652
CF HEAT STAN COF coe cotor
0.033008 0.008852 0.018604 0.135843 0.857802 0.993646
: X R NSH NSHP XSH
24056965 1.481293 1.071992 0.769285 0.381310 l.380881
UsS#H VSH TSH |RSH PSH
0.857710 0.226726 0.120330 5.327713 0.,183194
use vse TSP RSP PSP
0.091665 -0.084696 -0.05%486 -0.330612 -0.101929
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PWALL
0.105711

RSH
1.525029

PWALL
0.980785

RSH
1.609556

PWALL
0.071915

RSH
1.688823

PYALL
0065597

RSH
1. 763491

PRALL
0.060989

RSH
1.834696

PW/ PO
0.114766

NO ITER
36

PW/ PO
0.087705

NO ITER
34

PW/ PO
0.078075

NO ITER
43

PW/PO
0.071217

NO ITER
42

PW/PO
0.066214

NO ITER
42



CF
0.030649

S
2.194128

USH
0.B&£9244

usep
0.077149

CF
0.028774

S
2.331261

USH
0.87870%

usep
0.059373

ce
0.027154

S
2.468354

USH
0.886844

use
0.050353

CF
0.025854

S
2.605527

USH
0.895073

use
0.067366

CF
0.025167

HEAT
0.008257 0.
X
1.617253 l.
VSH
0.215708
vsp
=0.077060
HEAT
0.007799 0.
X
1.753213 1.
VSH
0.2060086
VsPpP
-0.063303
HEAT
0.007448 0.
X
1.889172 1.
VSH
0.197100
vsp
-0.056688
HEAT
0.007137 0.
X
2.025132 1.
VSH
0.187512
VSP
-0.080597
HEAT

0.006817 0.

STAN CGF cop coTor
017353 0.139349 0.833314 0.972663
R NSH NSHP XSH
089892 0.819539 0.351615 1.510282
TSH RSH PSH
0.112817 5.283300 0.170320
5P RSP PSP
-0.050508 -0.319154 -0.086540
STAN COF cop coToTr
016391 0.142159 0.809813 0.951972
R NSH NSHP XSH
107791 0.864317 0.301446 1.640397
TSH RSH PSH
0.106604 5.241506 0.159675
TSP RSP PSP
-0.039178 -0.277096 -0.067122
STAN CDF core coTOT
015654 0.144409 0.787287 0.931696
R NSH NSHP XSH
125691 0.904733 0.288002 1.771081
TSH RSH PSH
0.101215 5.201760 0.150442
TSP RSP PSP
=0.033461 -0.262395 -0.057324
STAN COF cop coTorv
014999 0.146203 0.765712 0.911916
R NSH NSHP XSH
143590 0.950673 0.382001 1.901045
TSH RSH PSH
0.095721 5.155987 0.141031
TSP RSP PSP
~0.045135 -0.395463 -0.077315
STAN CCF cce covor
014328 0.147680 0.745016 0.892696
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PWALL PW/PO
0.057375 0.062290
RSH NO ITER

1.902419 43
PWALL PW/PO
0.054544 0.059216
RSH NO ITER
1.964T714 45
PWALL PW/PO
0.052554 0.057056
RSH ND TTER

2.022684 42

PWALL PW/PD
0.050898 0.055258
RSH NO ITER

2.086130 48

PWALL
0.048489

PR/P0O
0.052643
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Q o

=

]

SYMBOLS

viscosity law constant, c* = 198.6°R
*2

)

skin friction coefficient, 21*/(p: u
specific heat of constant pressure
nondimensional total enthalpy, H*/u:2
thermal conductivity

free stream Mach number

coordinate measured normal to the body, nondimen-
sionalized by the body nose radius

shock stand off distance normal to the body surface

. * * *
nondimensional pressure, p /(p_ ui )

* X %
nondimensional heat transfer, g /(p_ um3)

nondimensioﬂal axisymmetric radius
defined as Y t g cosd
nondimensional surface distance coordinate
Stanton number, st = qw/(Ho-Hw)

* * *
nondimensional temperature, T = T /(umz/cpi

free stream temperature

nondimensional velocity component tangent to the
body surface, u*/u* .

free stream velocity

nondimensional component of velocity aft and
tangent to the shock interface

nondimensional velocity component normal to the
body surface, v*/u¥

nondimensional component of velocity aft and
normal to shock interface
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X axial distance for body surface measured from
stagnation point

Xg defined as Xp ~ Dg sing¢
Ygp normal distance for body surface measured

from axis
a shock angle, see Figure 1
B angle defined in Figure 1 \
Y ratio of specific heats

. **2*'***1/2

€ perturbation parameter, £ = [u (u_ /Cp)/p”u“a ]
K nondimensional surface curvature
u nondimensional coefficient of viscosity,

k%D %k
u=u/u (u /Cp)

p nondimensional density, p = p*/p:

p: free stream density

T nondimensional shear stress, r*/(p:uzz)
) - body angle defined in Figure 1

o Prandtl number, o = uCp/K

Subscripts

1 wall value

0 stagnation conditions

s used for longitudinal derivatives

sh conditions immediately behind the shock wave
© free stream conditions
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_ Superscripts

- physical quantities normalized by their shock values

* dimensional quantities, also used for first sweep
of ADI numerical scheme

J 0 for plane flow and 1 for axisymmetric flow

n+l represents second sweep of ADI numerical scheme
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